Browse Source

[Rspamd] Fix neural.lua

andryyy 5 years ago
parent
commit
e290d6d869
3 changed files with 1458 additions and 1 deletions
  1. 1 0
      data/Dockerfiles/rspamd/Dockerfile
  2. 1456 0
      data/Dockerfiles/rspamd/neural.lua
  3. 1 1
      docker-compose.yml

+ 1 - 0
data/Dockerfiles/rspamd/Dockerfile

@@ -23,6 +23,7 @@ RUN apt-get update && apt-get install -y \
   && chown _rspamd:_rspamd /run/rspamd
 
 COPY settings.conf /etc/rspamd/settings.conf
+COPY neural.lua /usr/share/rspamd/plugins/neural.lua
 COPY docker-entrypoint.sh /docker-entrypoint.sh
 
 ENTRYPOINT ["/docker-entrypoint.sh"]

+ 1456 - 0
data/Dockerfiles/rspamd/neural.lua

@@ -0,0 +1,1456 @@
+--[[
+Copyright (c) 2016, Vsevolod Stakhov <vsevolod@highsecure.ru>
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+]]--
+
+
+if confighelp then
+  return
+end
+
+local rspamd_logger = require "rspamd_logger"
+local rspamd_util = require "rspamd_util"
+local rspamd_kann = require "rspamd_kann"
+local lua_redis = require "lua_redis"
+local lua_util = require "lua_util"
+local fun = require "fun"
+local lua_settings = require "lua_settings"
+local meta_functions = require "lua_meta"
+local ts = require("tableshape").types
+local lua_verdict = require "lua_verdict"
+local N = "neural"
+
+-- Module vars
+local default_options = {
+  train = {
+    max_trains = 1000,
+    max_epoch = 1000,
+    max_usages = 10,
+    max_iterations = 25, -- Torch style
+    mse = 0.001,
+    autotrain = true,
+    train_prob = 1.0,
+    learn_threads = 1,
+    learning_rate = 0.01,
+  },
+  watch_interval = 60.0,
+  lock_expire = 600,
+  learning_spawned = false,
+  ann_expire = 60 * 60 * 24 * 2, -- 2 days
+  symbol_spam = 'NEURAL_SPAM',
+  symbol_ham = 'NEURAL_HAM',
+}
+
+local redis_profile_schema = ts.shape{
+  digest = ts.string,
+  symbols = ts.array_of(ts.string),
+  version = ts.number,
+  redis_key = ts.string,
+  distance = ts.number:is_optional(),
+}
+
+-- Rule structure:
+-- * static config fields (see `default_options`)
+-- * prefix - name or defined prefix
+-- * settings - table of settings indexed by settings id, -1 is used when no settings defined
+
+-- Rule settings element defines elements for specific settings id:
+-- * symbols - static symbols profile (defined by config or extracted from symcache)
+-- * name - name of settings id
+-- * digest - digest of all symbols
+-- * ann - dynamic ANN configuration loaded from Redis
+-- * train - train data for ANN (e.g. the currently trained ANN)
+
+-- Settings ANN table is loaded from Redis and represents dynamic profile for ANN
+-- Some elements are directly stored in Redis, ANN is, in turn loaded dynamically
+-- * version - version of ANN loaded from redis
+-- * redis_key - name of ANN key in Redis
+-- * symbols - symbols in THIS PARTICULAR ANN (might be different from set.symbols)
+-- * distance - distance between set.symbols and set.ann.symbols
+-- * ann - kann object
+
+local settings = {
+  rules = {},
+  prefix = 'rn', -- Neural network default prefix
+  max_profiles = 3, -- Maximum number of NN profiles stored
+}
+
+local module_config = rspamd_config:get_all_opt("neural")
+if not module_config then
+  -- Legacy
+  module_config = rspamd_config:get_all_opt("fann_redis")
+end
+
+
+-- Lua script that checks if we can store a new training vector
+-- Uses the following keys:
+-- key1 - ann key
+-- key2 - spam or ham
+-- key3 - maximum trains
+-- key4 - sampling coin (as Redis scripts do not allow math.random calls)
+-- returns 1 or 0 + reason: 1 - allow learn, 0 - not allow learn
+local redis_lua_script_can_store_train_vec = [[
+  local prefix = KEYS[1]
+  local locked = redis.call('HGET', prefix, 'lock')
+  if locked then return {tostring(-1),'locked by another process till: ' .. locked} end
+  local nspam = 0
+  local nham = 0
+  local lim = tonumber(KEYS[3])
+  local coin = tonumber(KEYS[4])
+
+  local ret = redis.call('LLEN', prefix .. '_spam')
+  if ret then nspam = tonumber(ret) end
+  ret = redis.call('LLEN', prefix .. '_ham')
+  if ret then nham = tonumber(ret) end
+
+  if KEYS[2] == 'spam' then
+    if nspam <= lim then
+      if nspam > nham then
+        -- Apply sampling
+        local skip_rate = 1.0 - nham / (nspam + 1)
+        if coin < skip_rate then
+          return {tostring(-(nspam)),'sampled out with probability ' .. tostring(skip_rate)}
+        end
+      end
+      return {tostring(nspam),'can learn'}
+    else -- Enough learns
+      return {tostring(-(nspam)),'too many spam samples'}
+    end
+  else
+    if nham <= lim then
+      if nham > nspam then
+        -- Apply sampling
+        local skip_rate = 1.0 - nspam / (nham + 1)
+        if coin < skip_rate then
+          return {tostring(-(nham)),'sampled out with probability ' .. tostring(skip_rate)}
+        end
+      end
+      return {tostring(nham),'can learn'}
+    else
+      return {tostring(-(nham)),'too many ham samples'}
+    end
+  end
+
+  return {tostring(-1),'bad input'}
+]]
+local redis_can_store_train_vec_id = nil
+
+-- Lua script to invalidate ANNs by rank
+-- Uses the following keys
+-- key1 - prefix for keys
+-- key2 - number of elements to leave
+local redis_lua_script_maybe_invalidate = [[
+  local card = redis.call('ZCARD', KEYS[1])
+  local lim = tonumber(KEYS[2])
+  if card > lim then
+    local to_delete = redis.call('ZRANGE', KEYS[1], 0, card - lim - 1)
+    for _,k in ipairs(to_delete) do
+      local tb = cjson.decode(k)
+      redis.call('DEL', tb.redis_key)
+      -- Also train vectors
+      redis.call('DEL', tb.redis_key .. '_spam')
+      redis.call('DEL', tb.redis_key .. '_ham')
+    end
+    redis.call('ZREMRANGEBYRANK', KEYS[1], 0, card - lim - 1)
+    return to_delete
+  else
+    return {}
+  end
+]]
+local redis_maybe_invalidate_id = nil
+
+-- Lua script to invalidate ANN from redis
+-- Uses the following keys
+-- key1 - prefix for keys
+-- key2 - current time
+-- key3 - key expire
+-- key4 - hostname
+local redis_lua_script_maybe_lock = [[
+  local locked = redis.call('HGET', KEYS[1], 'lock')
+  local now = tonumber(KEYS[2])
+  if locked then
+    locked = tonumber(locked)
+    local expire = tonumber(KEYS[3])
+    if now > locked and (now - locked) < expire then
+      return {tostring(locked), redis.call('HGET', KEYS[1], 'hostname')}
+    end
+  end
+  redis.call('HSET', KEYS[1], 'lock', tostring(now))
+  redis.call('HSET', KEYS[1], 'hostname', KEYS[4])
+  return 1
+]]
+local redis_maybe_lock_id = nil
+
+-- Lua script to save and unlock ANN in redis
+-- Uses the following keys
+-- key1 - prefix for ANN
+-- key2 - prefix for profile
+-- key3 - compressed ANN
+-- key4 - profile as JSON
+-- key5 - expire in seconds
+-- key6 - current time
+-- key7 - old key
+local redis_lua_script_save_unlock = [[
+  local now = tonumber(KEYS[6])
+  redis.call('ZADD', KEYS[2], now, KEYS[4])
+  redis.call('HSET', KEYS[1], 'ann', KEYS[3])
+  redis.call('DEL', KEYS[1] .. '_spam')
+  redis.call('DEL', KEYS[1] .. '_ham')
+  redis.call('HDEL', KEYS[1], 'lock')
+  redis.call('HDEL', KEYS[7], 'lock')
+  redis.call('EXPIRE', KEYS[1], tonumber(KEYS[5]))
+  return 1
+]]
+local redis_save_unlock_id = nil
+
+local redis_params
+
+local function load_scripts(params)
+  redis_can_store_train_vec_id = lua_redis.add_redis_script(redis_lua_script_can_store_train_vec,
+    params)
+  redis_maybe_invalidate_id = lua_redis.add_redis_script(redis_lua_script_maybe_invalidate,
+    params)
+  redis_maybe_lock_id = lua_redis.add_redis_script(redis_lua_script_maybe_lock,
+    params)
+  redis_save_unlock_id = lua_redis.add_redis_script(redis_lua_script_save_unlock,
+    params)
+end
+
+local function result_to_vector(task, profile)
+  if not profile.zeros then
+    -- Fill zeros vector
+    local zeros = {}
+    for i=1,meta_functions.count_metatokens() do
+      zeros[i] = 0.0
+    end
+    for _,_ in ipairs(profile.symbols) do
+      zeros[#zeros + 1] = 0.0
+    end
+    profile.zeros = zeros
+  end
+
+  local vec = lua_util.shallowcopy(profile.zeros)
+  local mt = meta_functions.rspamd_gen_metatokens(task)
+
+  for i,v in ipairs(mt) do
+    vec[i] = v
+  end
+
+  task:process_ann_tokens(profile.symbols, vec, #mt, 0.1)
+
+  return vec
+end
+
+-- Used to generate new ANN key for specific profile
+local function new_ann_key(rule, set, version)
+  local ann_key = string.format('%s_%s_%s_%s_%s', settings.prefix,
+      rule.prefix, set.name, set.digest:sub(1, 8), tostring(version))
+
+  return ann_key
+end
+
+-- Extract settings element for a specific settings id
+local function get_rule_settings(task, rule)
+  local sid = task:get_settings_id() or -1
+
+  local set = rule.settings[sid]
+
+  if not set then return nil end
+
+  while type(set) == 'number' do
+    -- Reference to another settings!
+    set = rule.settings[set]
+  end
+
+  return set
+end
+
+-- Generate redis prefix for specific rule and specific settings
+local function redis_ann_prefix(rule, settings_name)
+  -- We also need to count metatokens:
+  local n = meta_functions.version
+  return string.format('%s_%s_%d_%s',
+      settings.prefix, rule.prefix, n, settings_name)
+end
+
+-- Creates and stores ANN profile in Redis
+local function new_ann_profile(task, rule, set, version)
+  local ann_key = new_ann_key(rule, set, version)
+
+  local profile = {
+    symbols = set.symbols,
+    redis_key = ann_key,
+    version = version,
+    digest = set.digest,
+    distance = 0 -- Since we are using our own profile
+  }
+
+  local ucl = require "ucl"
+  local profile_serialized = ucl.to_format(profile, 'json-compact', true)
+
+  local function add_cb(err, _)
+    if err then
+      rspamd_logger.errx(task, 'cannot store ANN profile for %s:%s at %s : %s',
+          rule.prefix, set.name, profile.redis_key, err)
+    else
+      rspamd_logger.infox(task, 'created new ANN profile for %s:%s, data stored at prefix %s',
+          rule.prefix, set.name, profile.redis_key)
+    end
+  end
+
+  lua_redis.redis_make_request(task,
+      rule.redis,
+      nil,
+      true, -- is write
+      add_cb, --callback
+      'ZADD', -- command
+      {set.prefix, tostring(rspamd_util.get_time()), profile_serialized}
+  )
+
+  return profile
+end
+
+
+-- ANN filter function, used to insert scores based on the existing symbols
+local function ann_scores_filter(task)
+
+  for _,rule in pairs(settings.rules) do
+    local sid = task:get_settings_id() or -1
+    local ann
+    local profile
+
+    local set = get_rule_settings(task, rule)
+    if set then
+      if set.ann then
+        ann = set.ann.ann
+        profile = set.ann
+      else
+        lua_util.debugm(N, task, 'no ann loaded for %s:%s',
+            rule.prefix, set.name)
+      end
+    else
+      lua_util.debugm(N, task, 'no ann defined in %s for settings id %s',
+          rule.prefix, sid)
+    end
+
+    if ann then
+      local vec = result_to_vector(task, profile)
+
+      local score
+      local out = ann:apply1(vec)
+      score = out[1]
+
+      local symscore = string.format('%.3f', score)
+      lua_util.debugm(N, task, '%s:%s:%s ann score: %s',
+          rule.prefix, set.name, set.ann.version, symscore)
+
+      if score > 0 then
+        local result = score
+        task:insert_result(rule.symbol_spam, result, symscore)
+      else
+        local result = -(score)
+        task:insert_result(rule.symbol_ham, result, symscore)
+      end
+    end
+  end
+end
+
+local function create_ann(n, nlayers)
+    -- We ignore number of layers so far when using kann
+  local nhidden = math.floor((n + 1) / 2)
+  local t = rspamd_kann.layer.input(n)
+  t = rspamd_kann.transform.relu(t)
+  t = rspamd_kann.transform.tanh(rspamd_kann.layer.dense(t, nhidden));
+  t = rspamd_kann.layer.cost(t, 1, rspamd_kann.cost.mse)
+  return rspamd_kann.new.kann(t)
+end
+
+
+local function ann_push_task_result(rule, task, verdict, score, set)
+  local train_opts = rule.train
+  local learn_spam, learn_ham
+  local skip_reason = 'unknown'
+
+  if train_opts.autotrain then
+    if train_opts.spam_score then
+      learn_spam = score >= train_opts.spam_score
+
+      if not learn_spam then
+        skip_reason = string.format('score < spam_score: %f < %f',
+            score, train_opts.spam_score)
+      end
+    else
+      learn_spam = verdict == 'spam' or verdict == 'junk'
+
+      if not learn_spam then
+        skip_reason = string.format('verdict: %s',
+            verdict)
+      end
+    end
+
+    if train_opts.ham_score then
+      learn_ham = score <= train_opts.ham_score
+      if not learn_ham then
+        skip_reason = string.format('score > ham_score: %f > %f',
+            score, train_opts.ham_score)
+      end
+    else
+      learn_ham = verdict == 'ham'
+
+      if not learn_ham then
+        skip_reason = string.format('verdict: %s',
+            verdict)
+      end
+    end
+  else
+    -- Train by request header
+    local hdr = task:get_request_header('ANN-Train')
+
+    if hdr then
+      if hdr:lower() == 'spam' then
+        learn_spam = true
+      elseif hdr:lower() == 'ham' then
+        learn_ham = true
+      else
+        skip_reason = string.format('no explicit header')
+      end
+    end
+  end
+
+
+  if learn_spam or learn_ham then
+    local learn_type
+    if learn_spam then learn_type = 'spam' else learn_type = 'ham' end
+
+    local function can_train_cb(err, data)
+      if not err and type(data) == 'table' then
+        local nsamples,reason = tonumber(data[1]),data[2]
+
+        if nsamples >= 0 then
+          local coin = math.random()
+
+          if coin < 1.0 - train_opts.train_prob then
+            rspamd_logger.infox(task, 'probabilistically skip sample: %s', coin)
+            return
+          end
+
+          local vec = result_to_vector(task, set)
+
+          local str = rspamd_util.zstd_compress(table.concat(vec, ';'))
+          local target_key = set.ann.redis_key .. '_' .. learn_type
+
+          local function learn_vec_cb(_err)
+            if _err then
+              rspamd_logger.errx(task, 'cannot store train vector for %s:%s: %s',
+                  rule.prefix, set.name, _err)
+            else
+              lua_util.debugm(N, task,
+                  "add train data for ANN rule " ..
+                      "%s:%s, save %s vector of %s elts in %s key; %s bytes compressed",
+                  rule.prefix, set.name, learn_type, #vec, target_key, #str)
+            end
+          end
+
+          lua_redis.redis_make_request(task,
+              rule.redis,
+              nil,
+              true, -- is write
+              learn_vec_cb, --callback
+              'LPUSH', -- command
+              { target_key, str } -- arguments
+          )
+        else
+          -- Negative result returned
+          rspamd_logger.infox(task, "cannot learn %s ANN %s:%s; redis_key: %s: %s (%s vectors stored)",
+              learn_type, rule.prefix, set.name, set.ann.redis_key, reason, -tonumber(nsamples))
+        end
+      else
+        if err then
+          rspamd_logger.errx(task, 'cannot check if we can train %s:%s : %s',
+              rule.prefix, set.name, err)
+        else
+          rspamd_logger.errx(task, 'cannot check if we can train %s:%s : type of Redis key %s is %s, expected table' ..
+              'please remove this key from Redis manually if you perform upgrade from the previous version',
+              rule.prefix, set.name, set.ann.redis_key, type(data))
+        end
+      end
+    end
+
+    -- Check if we can learn
+    if set.can_store_vectors then
+      if not set.ann then
+        -- Need to create or load a profile corresponding to the current configuration
+        set.ann = new_ann_profile(task, rule, set, 0)
+        lua_util.debugm(N, task,
+            'requested new profile for %s, set.ann is missing',
+            set.name)
+      end
+
+      lua_redis.exec_redis_script(redis_can_store_train_vec_id,
+          {task = task, is_write = true},
+          can_train_cb,
+          {
+            set.ann.redis_key,
+            learn_type,
+            tostring(train_opts.max_trains),
+            tostring(math.random()),
+          })
+    else
+      lua_util.debugm(N, task,
+          'do not push data: train condition not satisfied; reason: not checked existing ANNs')
+    end
+  else
+    lua_util.debugm(N, task,
+        'do not push data to key %s: train condition not satisfied; reason: %s',
+        (set.ann or {}).redis_key,
+        skip_reason)
+  end
+end
+
+--- Offline training logic
+
+-- Closure generator for unlock function
+local function gen_unlock_cb(rule, set, ann_key)
+  return function (err)
+    if err then
+      rspamd_logger.errx(rspamd_config, 'cannot unlock ANN %s:%s at %s from redis: %s',
+          rule.prefix, set.name, ann_key, err)
+    else
+      lua_util.debugm(N, rspamd_config, 'unlocked ANN %s:%s at %s',
+          rule.prefix, set.name, ann_key)
+    end
+  end
+end
+
+-- This function is intended to extend lock for ANN during training
+-- It registers periodic that increases locked key each 30 seconds unless
+-- `set.learning_spawned` is set to `true`
+local function register_lock_extender(rule, set, ev_base, ann_key)
+  rspamd_config:add_periodic(ev_base, 30.0,
+      function()
+        local function redis_lock_extend_cb(_err, _)
+          if _err then
+            rspamd_logger.errx(rspamd_config, 'cannot lock ANN %s from redis: %s',
+                ann_key, _err)
+          else
+            rspamd_logger.infox(rspamd_config, 'extend lock for ANN %s for 30 seconds',
+                ann_key)
+          end
+        end
+
+        if set.learning_spawned then
+          lua_redis.redis_make_request_taskless(ev_base,
+              rspamd_config,
+              rule.redis,
+              nil,
+              true, -- is write
+              redis_lock_extend_cb, --callback
+              'HINCRBY', -- command
+              {ann_key, 'lock', '30'}
+          )
+        else
+          lua_util.debugm(N, rspamd_config, "stop lock extension as learning_spawned is false")
+          return false -- do not plan any more updates
+        end
+
+        return true
+      end
+  )
+end
+
+-- This function receives training vectors, checks them, spawn learning and saves ANN in Redis
+local function spawn_train(worker, ev_base, rule, set, ann_key, ham_vec, spam_vec)
+  -- Check training data sanity
+  -- Now we need to join inputs and create the appropriate test vectors
+  local n = #set.symbols +
+      meta_functions.rspamd_count_metatokens()
+
+  -- Now we can train ann
+  local train_ann = create_ann(n, 3)
+
+  if #ham_vec + #spam_vec < rule.train.max_trains / 2 then
+    -- Invalidate ANN as it is definitely invalid
+    -- TODO: add invalidation
+    assert(false)
+  else
+    local inputs, outputs = {}, {}
+
+    -- Used to show sparsed vectors in a convenient format (for debugging only)
+    local function debug_vec(t)
+      local ret = {}
+      for i,v in ipairs(t) do
+        if v ~= 0 then
+          ret[#ret + 1] = string.format('%d=%.2f', i, v)
+        end
+      end
+
+      return ret
+    end
+
+    -- Make training set by joining vectors
+    -- KANN automatically shuffles those samples
+    -- 1.0 is used for spam and -1.0 is used for ham
+    -- It implies that output layer can express that (e.g. tanh output)
+    for _,e in ipairs(spam_vec) do
+      inputs[#inputs + 1] = e
+      outputs[#outputs + 1] = {1.0}
+      --rspamd_logger.debugm(N, rspamd_config, 'spam vector: %s', debug_vec(e))
+    end
+    for _,e in ipairs(ham_vec) do
+      inputs[#inputs + 1] = e
+      outputs[#outputs + 1] = {-1.0}
+      --rspamd_logger.debugm(N, rspamd_config, 'ham vector: %s', debug_vec(e))
+    end
+
+    -- Called in child process
+    local function train()
+      local log_thresh = rule.train.max_iterations / 10
+      local seen_nan = false
+
+      local function train_cb(iter, train_cost, value_cost)
+        if (iter * (rule.train.max_iterations / log_thresh)) % (rule.train.max_iterations) == 0 then
+          if train_cost ~= train_cost and not seen_nan then
+            -- We have nan :( try to log lot's of stuff to dig into a problem
+            seen_nan = true
+            rspamd_logger.errx(rspamd_config, 'ANN %s:%s: train error: observed nan in error cost!; value cost = %s',
+                rule.prefix, set.name,
+                value_cost)
+            for i,e in ipairs(inputs) do
+              lua_util.debugm(N, rspamd_config, 'train vector %s -> %s',
+                  debug_vec(e), outputs[i][1])
+            end
+          end
+
+          rspamd_logger.infox(rspamd_config,
+              "ANN %s:%s: learned from %s redis key in %s iterations, error: %s, value cost: %s",
+              rule.prefix, set.name,
+              ann_key,
+              iter,
+              train_cost,
+              value_cost)
+        end
+      end
+
+      train_ann:train1(inputs, outputs, {
+        lr = rule.train.learning_rate,
+        max_epoch = rule.train.max_iterations,
+        cb = train_cb,
+      })
+
+      if not seen_nan then
+        local out = train_ann:save()
+        return out
+      else
+        return nil
+      end
+    end
+
+    set.learning_spawned = true
+
+    local function redis_save_cb(err)
+      if err then
+        rspamd_logger.errx(rspamd_config, 'cannot save ANN %s:%s to redis key %s: %s',
+            rule.prefix, set.name, ann_key, err)
+        lua_redis.redis_make_request_taskless(ev_base,
+            rspamd_config,
+            rule.redis,
+            nil,
+            false, -- is write
+            gen_unlock_cb(rule, set, ann_key), --callback
+            'HDEL', -- command
+            {ann_key, 'lock'}
+        )
+      else
+        rspamd_logger.infox(rspamd_config, 'saved ANN %s:%s to redis: %s',
+            rule.prefix, set.name, set.ann.redis_key)
+      end
+    end
+
+    local function ann_trained(err, data)
+      set.learning_spawned = false
+      if err then
+        rspamd_logger.errx(rspamd_config, 'cannot train ANN %s:%s : %s',
+            rule.prefix, set.name, err)
+        lua_redis.redis_make_request_taskless(ev_base,
+            rspamd_config,
+            rule.redis,
+            nil,
+            true, -- is write
+            gen_unlock_cb(rule, set, ann_key), --callback
+            'HDEL', -- command
+            {ann_key, 'lock'}
+        )
+      else
+        local ann_data = rspamd_util.zstd_compress(data)
+        if not set.ann then
+          set.ann = {
+            symbols = set.symbols,
+            distance = 0,
+            digest = set.digest,
+            redis_key = ann_key,
+          }
+        end
+        -- Deserialise ANN from the child process
+        ann_trained = rspamd_kann.load(data)
+        local version = (set.ann.version or 0) + 1
+        set.ann.version = version
+        set.ann.ann = ann_trained
+        set.ann.symbols = set.symbols
+        set.ann.redis_key = new_ann_key(rule, set, version)
+
+        local profile = {
+          symbols = set.symbols,
+          digest = set.digest,
+          redis_key = set.ann.redis_key,
+          version = version
+        }
+
+        local ucl = require "ucl"
+        local profile_serialized = ucl.to_format(profile, 'json-compact', true)
+
+        rspamd_logger.infox(rspamd_config,
+            'trained ANN %s:%s, %s bytes; redis key: %s (old key %s)',
+            rule.prefix, set.name, #data, set.ann.redis_key, ann_key)
+
+        lua_redis.exec_redis_script(redis_save_unlock_id,
+            {ev_base = ev_base, is_write = true},
+            redis_save_cb,
+            {profile.redis_key,
+             redis_ann_prefix(rule, set.name),
+             ann_data,
+             profile_serialized,
+             tostring(rule.ann_expire),
+             tostring(os.time()),
+             ann_key, -- old key to unlock...
+            })
+      end
+    end
+
+    worker:spawn_process{
+      func = train,
+      on_complete = ann_trained,
+      proctitle = string.format("ANN train for %s/%s", rule.prefix, set.name),
+    }
+  end
+  -- Spawn learn and register lock extension
+  set.learning_spawned = true
+  register_lock_extender(rule, set, ev_base, ann_key)
+end
+
+-- Utility to extract and split saved training vectors to a table of tables
+local function process_training_vectors(data)
+  return fun.totable(fun.map(function(tok)
+    local _,str = rspamd_util.zstd_decompress(tok)
+    return fun.totable(fun.map(tonumber, lua_util.str_split(tostring(str), ';')))
+  end, data))
+end
+
+-- This function does the following:
+-- * Tries to lock ANN
+-- * Loads spam and ham vectors
+-- * Spawn learning process
+local function do_train_ann(worker, ev_base, rule, set, ann_key)
+  local spam_elts = {}
+  local ham_elts = {}
+
+  local function redis_ham_cb(err, data)
+    if err or type(data) ~= 'table' then
+      rspamd_logger.errx(rspamd_config, 'cannot get ham tokens for ANN %s from redis: %s',
+        ann_key, err)
+      -- Unlock on error
+      lua_redis.redis_make_request_taskless(ev_base,
+        rspamd_config,
+        rule.redis,
+        nil,
+        true, -- is write
+          gen_unlock_cb(rule, set, ann_key), --callback
+        'HDEL', -- command
+        {ann_key, 'lock'}
+      )
+    else
+      -- Decompress and convert to numbers each training vector
+      ham_elts = process_training_vectors(data)
+      spawn_train(worker, ev_base, rule, set, ann_key, ham_elts, spam_elts)
+    end
+  end
+
+  -- Spam vectors received
+  local function redis_spam_cb(err, data)
+    if err or type(data) ~= 'table' then
+      rspamd_logger.errx(rspamd_config, 'cannot get spam tokens for ANN %s from redis: %s',
+        ann_key, err)
+      -- Unlock ANN on error
+      lua_redis.redis_make_request_taskless(ev_base,
+        rspamd_config,
+        rule.redis,
+        nil,
+        true, -- is write
+          gen_unlock_cb(rule, set, ann_key), --callback
+        'HDEL', -- command
+        {ann_key, 'lock'}
+      )
+    else
+      -- Decompress and convert to numbers each training vector
+      spam_elts = process_training_vectors(data)
+      -- Now get ham vectors...
+      lua_redis.redis_make_request_taskless(ev_base,
+        rspamd_config,
+        rule.redis,
+        nil,
+        false, -- is write
+        redis_ham_cb, --callback
+        'LRANGE', -- command
+        {ann_key .. '_ham', '0', '-1'}
+      )
+    end
+  end
+
+  local function redis_lock_cb(err, data)
+    if err then
+      rspamd_logger.errx(rspamd_config, 'cannot call lock script for ANN %s from redis: %s',
+        ann_key, err)
+    elseif type(data) == 'number' and data == 1 then
+      -- ANN is locked, so we can extract SPAM and HAM vectors and spawn learning
+      lua_redis.redis_make_request_taskless(ev_base,
+        rspamd_config,
+        rule.redis,
+        nil,
+        false, -- is write
+        redis_spam_cb, --callback
+        'LRANGE', -- command
+        {ann_key .. '_spam', '0', '-1'}
+      )
+
+      rspamd_logger.infox(rspamd_config, 'lock ANN %s:%s (key name %s) for learning',
+        rule.prefix, set.name, ann_key)
+    else
+      local lock_tm = tonumber(data[1])
+      rspamd_logger.infox(rspamd_config, 'do not learn ANN %s:%s (key name %s), ' ..
+          'locked by another host %s at %s', rule.prefix, set.name, ann_key,
+          data[2], os.date('%c', lock_tm))
+    end
+  end
+
+  -- Check if we are already learning this network
+  if set.learning_spawned then
+    rspamd_logger.infox(rspamd_config, 'do not learn ANN %s, already learning another ANN',
+        ann_key)
+    return
+  end
+
+  -- Call Redis script that tries to acquire a lock
+  -- This script returns either a boolean or a pair {'lock_time', 'hostname'} when
+  -- ANN is locked by another host (or a process, meh)
+  lua_redis.exec_redis_script(redis_maybe_lock_id,
+    {ev_base = ev_base, is_write = true},
+    redis_lock_cb,
+      {
+        ann_key,
+        tostring(os.time()),
+        tostring(rule.watch_interval * 2),
+        rspamd_util.get_hostname()
+    })
+end
+
+-- This function loads new ann from Redis
+-- This is based on `profile` attribute.
+-- ANN is loaded from `profile.redis_key`
+-- Rank of `profile` key is also increased, unfortunately, it means that we need to
+-- serialize profile one more time and set its rank to the current time
+-- set.ann fields are set according to Redis data received
+local function load_new_ann(rule, ev_base, set, profile, min_diff)
+  local ann_key = profile.redis_key
+
+  local function data_cb(err, data)
+    if err then
+      rspamd_logger.errx(rspamd_config, 'cannot get ANN data from key: %s; %s',
+          ann_key, err)
+    else
+      if type(data) == 'string' then
+        local _err,ann_data = rspamd_util.zstd_decompress(data)
+        local ann
+
+        if _err or not ann_data then
+          rspamd_logger.errx(rspamd_config, 'cannot decompress ANN for %s from Redis key %s: %s',
+              rule.prefix .. ':' .. set.name, ann_key, _err)
+          return
+        else
+          ann = rspamd_kann.load(ann_data)
+
+          if ann then
+            set.ann = {
+              digest = profile.digest,
+              version = profile.version,
+              symbols = profile.symbols,
+              distance = min_diff,
+              redis_key = profile.redis_key
+            }
+
+            local ucl = require "ucl"
+            local profile_serialized = ucl.to_format(profile, 'json-compact', true)
+            set.ann.ann = ann -- To avoid serialization
+
+            local function rank_cb(_, _)
+              -- TODO: maybe add some logging
+            end
+            -- Also update rank for the loaded ANN to avoid removal
+            lua_redis.redis_make_request_taskless(ev_base,
+                rspamd_config,
+                rule.redis,
+                nil,
+                true, -- is write
+                rank_cb, --callback
+                'ZADD', -- command
+                {set.prefix, tostring(rspamd_util.get_time()), profile_serialized}
+            )
+            rspamd_logger.infox(rspamd_config, 'loaded ANN for %s:%s from %s; %s bytes compressed; version=%s',
+                rule.prefix, set.name, ann_key, #ann_data, profile.version)
+          else
+            rspamd_logger.errx(rspamd_config, 'cannot deserialize ANN for %s:%s from Redis key %s',
+                rule.prefix, set.name, ann_key)
+          end
+        end
+      else
+        lua_util.debugm(N, rspamd_config, 'no ANN for %s:%s in Redis key %s',
+            rule.prefix, set.name, ann_key)
+      end
+    end
+  end
+  lua_redis.redis_make_request_taskless(ev_base,
+      rspamd_config,
+      rule.redis,
+      nil,
+      false, -- is write
+      data_cb, --callback
+      'HGET', -- command
+      {ann_key, 'ann'} -- arguments
+  )
+end
+
+-- Used to check an element in Redis serialized as JSON
+-- for some specific rule + some specific setting
+-- This function tries to load more fresh or more specific ANNs in lieu of
+-- the existing ones.
+-- Use this function to load ANNs as `callback` parameter for `check_anns` function
+local function process_existing_ann(_, ev_base, rule, set, profiles)
+  local my_symbols = set.symbols
+  local min_diff = math.huge
+  local sel_elt
+
+  for _,elt in fun.iter(profiles) do
+    if elt and elt.symbols then
+      local dist = lua_util.distance_sorted(elt.symbols, my_symbols)
+      -- Check distance
+      if dist < #my_symbols * .3 then
+        if dist < min_diff then
+          min_diff = dist
+          sel_elt = elt
+        end
+      end
+    end
+  end
+
+  if sel_elt then
+    -- We can load element from ANN
+    if set.ann then
+      -- We have an existing ANN, probably the same...
+      if set.ann.digest == sel_elt.digest then
+        -- Same ANN, check version
+        if set.ann.version < sel_elt.version then
+          -- Load new ann
+          rspamd_logger.infox(rspamd_config, 'ann %s is changed, ' ..
+              'our version = %s, remote version = %s',
+              rule.prefix .. ':' .. set.name,
+              set.ann.version,
+              sel_elt.version)
+          load_new_ann(rule, ev_base, set, sel_elt, min_diff)
+        else
+          lua_util.debugm(N, rspamd_config, 'ann %s is not changed, ' ..
+              'our version = %s, remote version = %s',
+              rule.prefix .. ':' .. set.name,
+              set.ann.version,
+              sel_elt.version)
+        end
+      else
+        -- We have some different ANN, so we need to compare distance
+        if set.ann.distance > min_diff then
+          -- Load more specific ANN
+          rspamd_logger.infox(rspamd_config, 'more specific ann is available for %s, ' ..
+              'our distance = %s, remote distance = %s',
+              rule.prefix .. ':' .. set.name,
+              set.ann.distance,
+              min_diff)
+          load_new_ann(rule, ev_base, set, sel_elt, min_diff)
+        else
+          lua_util.debugm(N, rspamd_config, 'ann %s is not changed or less specific, ' ..
+              'our distance = %s, remote distance = %s',
+              rule.prefix .. ':' .. set.name,
+              set.ann.distance,
+              min_diff)
+        end
+      end
+    else
+      -- We have no ANN, load new one
+      load_new_ann(rule, ev_base, set, sel_elt, min_diff)
+    end
+  end
+end
+
+
+-- This function checks all profiles and selects if we can train our
+-- ANN. By our we mean that it has exactly the same symbols in profile.
+-- Use this function to train ANN as `callback` parameter for `check_anns` function
+local function maybe_train_existing_ann(worker, ev_base, rule, set, profiles)
+  local my_symbols = set.symbols
+  local sel_elt
+
+  for _,elt in fun.iter(profiles) do
+    if elt and elt.symbols then
+      local dist = lua_util.distance_sorted(elt.symbols, my_symbols)
+      -- Check distance
+      if dist == 0 then
+        sel_elt = elt
+        break
+      end
+    end
+  end
+
+  if sel_elt then
+    -- We have our ANN and that's train vectors, check if we can learn
+    local ann_key = sel_elt.redis_key
+
+    lua_util.debugm(N, rspamd_config, "check if ANN %s needs to be trained",
+        ann_key)
+
+    -- Create continuation closure
+    local redis_len_cb_gen = function(cont_cb, what, is_final)
+      return function(err, data)
+        if err then
+          rspamd_logger.errx(rspamd_config,
+              'cannot get ANN %s trains %s from redis: %s', what, ann_key, err)
+        elseif data and type(data) == 'number' or type(data) == 'string' then
+          if tonumber(data) and tonumber(data) >= rule.train.max_trains then
+            if is_final then
+              rspamd_logger.debugm(N, rspamd_config,
+                  'can start ANN %s learn as it has %s learn vectors; %s required, after checking %s vectors',
+                  ann_key, tonumber(data), rule.train.max_trains, what)
+            else
+              rspamd_logger.debugm(N, rspamd_config,
+                  'checked %s vectors in ANN %s: %s vectors; %s required, need to check other class vectors',
+                  what, ann_key, tonumber(data), rule.train.max_trains)
+            end
+            cont_cb()
+          else
+            rspamd_logger.debugm(N, rspamd_config,
+                'cannot learn ANN %s now: there are not enough %s learn vectors (has %s vectors; %s required)',
+                ann_key, what, tonumber(data), rule.train.max_trains)
+          end
+        end
+      end
+
+    end
+
+    local function initiate_train()
+      rspamd_logger.infox(rspamd_config,
+          'need to learn ANN %s after %s required learn vectors',
+          ann_key, rule.train.max_trains)
+      do_train_ann(worker, ev_base, rule, set, ann_key)
+    end
+
+    -- Spam vector is OK, check ham vector length
+    local function check_ham_len()
+      lua_redis.redis_make_request_taskless(ev_base,
+          rspamd_config,
+          rule.redis,
+          nil,
+          false, -- is write
+          redis_len_cb_gen(initiate_train, 'ham', true), --callback
+          'LLEN', -- command
+          {ann_key .. '_ham'}
+      )
+    end
+
+    lua_redis.redis_make_request_taskless(ev_base,
+        rspamd_config,
+        rule.redis,
+        nil,
+        false, -- is write
+        redis_len_cb_gen(check_ham_len, 'spam', false), --callback
+        'LLEN', -- command
+        {ann_key .. '_spam'}
+    )
+  end
+end
+
+-- Used to deserialise ANN element from a list
+local function load_ann_profile(element)
+  local ucl = require "ucl"
+
+  local parser = ucl.parser()
+  local res,ucl_err = parser:parse_string(element)
+  if not res then
+    rspamd_logger.warnx(rspamd_config, 'cannot parse ANN from redis: %s',
+        ucl_err)
+    return nil
+  else
+    local profile = parser:get_object()
+    local checked,schema_err = redis_profile_schema:transform(profile)
+    if not checked then
+      rspamd_logger.errx(rspamd_config, "cannot parse profile schema: %s", schema_err)
+
+      return nil
+    end
+    return checked
+  end
+end
+
+-- Function to check or load ANNs from Redis
+local function check_anns(worker, cfg, ev_base, rule, process_callback, what)
+  for _,set in pairs(rule.settings) do
+    local function members_cb(err, data)
+      if err then
+        rspamd_logger.errx(cfg, 'cannot get ANNs list from redis: %s',
+            err)
+        set.can_store_vectors = true
+      elseif type(data) == 'table' then
+        lua_util.debugm(N, cfg, '%s: process element %s:%s',
+            what, rule.prefix, set.name)
+        process_callback(worker, ev_base, rule, set, fun.map(load_ann_profile, data))
+        set.can_store_vectors = true
+      end
+    end
+
+    if type(set) == 'table' then
+      -- Extract all profiles for some specific settings id
+      -- Get the last `max_profiles` recently used
+      -- Select the most appropriate to our profile but it should not differ by more
+      -- than 30% of symbols
+      lua_redis.redis_make_request_taskless(ev_base,
+          cfg,
+          rule.redis,
+          nil,
+          false, -- is write
+          members_cb, --callback
+          'ZREVRANGE', -- command
+          {set.prefix, '0', tostring(settings.max_profiles)} -- arguments
+      )
+    end
+  end -- Cycle over all settings
+
+  return rule.watch_interval
+end
+
+-- Function to clean up old ANNs
+local function cleanup_anns(rule, cfg, ev_base)
+  for _,set in pairs(rule.settings) do
+    local function invalidate_cb(err, data)
+      if err then
+        rspamd_logger.errx(cfg, 'cannot exec invalidate script in redis: %s',
+            err)
+      elseif type(data) == 'table' then
+        for _,expired in ipairs(data) do
+          local profile = load_ann_profile(expired)
+          rspamd_logger.infox(cfg, 'invalidated ANN for %s; redis key: %s; version=%s',
+              rule.prefix .. ':' .. set.name,
+              profile.redis_key,
+              profile.version)
+        end
+      end
+    end
+
+    if type(set) == 'table' then
+      lua_redis.exec_redis_script(redis_maybe_invalidate_id,
+          {ev_base = ev_base, is_write = true},
+          invalidate_cb,
+          {set.prefix, tostring(settings.max_profiles)})
+    end
+  end
+end
+
+local function ann_push_vector(task)
+  if task:has_flag('skip') then
+    lua_util.debugm(N, task, 'do not push data for skipped task')
+    return
+  end
+  if not settings.allow_local and lua_util.is_rspamc_or_controller(task) then
+    lua_util.debugm(N, task, 'do not push data for manual scan')
+    return
+  end
+
+  local verdict,score = lua_verdict.get_specific_verdict(N, task)
+
+  if verdict == 'passthrough' then
+    lua_util.debugm(N, task, 'ignore task as its verdict is %s(%s)',
+        verdict, score)
+
+    return
+  end
+
+  if score ~= score then
+    lua_util.debugm(N, task, 'ignore task as its score is nan (%s verdict)',
+        verdict)
+
+    return
+  end
+
+  for _,rule in pairs(settings.rules) do
+    local set = get_rule_settings(task, rule)
+
+    if set then
+      ann_push_task_result(rule, task, verdict, score, set)
+    else
+      lua_util.debugm(N, task, 'settings not found in rule %s', rule.prefix)
+    end
+
+  end
+end
+
+
+-- This function is used to adjust profiles and allowed setting ids for each rule
+-- It must be called when all settings are already registered (e.g. at post-init for config)
+local function process_rules_settings()
+  local function process_settings_elt(rule, selt)
+    local profile = rule.profile[selt.name]
+    if profile then
+      -- Use static user defined profile
+      -- Ensure that we have an array...
+      lua_util.debugm(N, rspamd_config, "use static profile for %s (%s): %s",
+          rule.prefix, selt.name, profile)
+      if not profile[1] then profile = lua_util.keys(profile) end
+      selt.symbols = profile
+    else
+      lua_util.debugm(N, rspamd_config, "use dynamic cfg based profile for %s (%s)",
+          rule.prefix, selt.name)
+    end
+
+    local function filter_symbols_predicate(sname)
+      local fl = rspamd_config:get_symbol_flags(sname)
+      if fl then
+        fl = lua_util.list_to_hash(fl)
+
+        return not (fl.nostat or fl.idempotent or fl.skip)
+      end
+
+      return false
+    end
+
+    -- Generic stuff
+    table.sort(fun.totable(fun.filter(filter_symbols_predicate, selt.symbols)))
+
+    selt.digest = lua_util.table_digest(selt.symbols)
+    selt.prefix = redis_ann_prefix(rule, selt.name)
+
+    lua_redis.register_prefix(selt.prefix, N,
+        string.format('NN prefix for rule "%s"; settings id "%s"',
+            rule.prefix, selt.name), {
+          persistent = true,
+          type = 'zlist',
+        })
+    -- Versions
+    lua_redis.register_prefix(selt.prefix .. '_\\d+', N,
+        string.format('NN storage for rule "%s"; settings id "%s"',
+            rule.prefix, selt.name), {
+          persistent = true,
+          type = 'hash',
+        })
+    lua_redis.register_prefix(selt.prefix .. '_\\d+_spam', N,
+        string.format('NN learning set (spam) for rule "%s"; settings id "%s"',
+            rule.prefix, selt.name), {
+          persistent = true,
+          type = 'list',
+        })
+    lua_redis.register_prefix(selt.prefix .. '_\\d+_ham', N,
+        string.format('NN learning set (spam) for rule "%s"; settings id "%s"',
+            rule.prefix, selt.name), {
+          persistent = true,
+          type = 'list',
+        })
+  end
+
+  for k,rule in pairs(settings.rules) do
+    if not rule.allowed_settings then
+      rule.allowed_settings = {}
+    elseif rule.allowed_settings == 'all' then
+      -- Extract all settings ids
+      rule.allowed_settings = lua_util.keys(lua_settings.all_settings())
+    end
+
+    -- Convert to a map <setting_id> -> true
+    rule.allowed_settings = lua_util.list_to_hash(rule.allowed_settings)
+
+    -- Check if we can work without settings
+    if k == 'default' or type(rule.default) ~= 'boolean' then
+      rule.default = true
+    end
+
+    rule.settings = {}
+
+    if rule.default then
+      local default_settings = {
+        symbols = lua_settings.default_symbols(),
+        name = 'default'
+      }
+
+      process_settings_elt(rule, default_settings)
+      rule.settings[-1] = default_settings -- Magic constant, but OK as settings are positive int32
+    end
+
+    -- Now, for each allowed settings, we store sorted symbols + digest
+    -- We set table rule.settings[id] -> { name = name, symbols = symbols, digest = digest }
+    for s,_ in pairs(rule.allowed_settings) do
+      -- Here, we have a name, set of symbols and
+      local settings_id = s
+      if type(settings_id) ~= 'number' then
+        settings_id = lua_settings.numeric_settings_id(s)
+      end
+      local selt = lua_settings.settings_by_id(settings_id)
+
+      local nelt = {
+        symbols = selt.symbols, -- Already sorted
+        name = selt.name
+      }
+
+      process_settings_elt(rule, nelt)
+      for id,ex in pairs(rule.settings) do
+        if type(ex) == 'table' then
+          if nelt and lua_util.distance_sorted(ex.symbols, nelt.symbols) == 0 then
+            -- Equal symbols, add reference
+            lua_util.debugm(N, rspamd_config,
+                'added reference from settings id %s to %s; same symbols',
+                nelt.name, ex.name)
+            rule.settings[settings_id] = id
+            nelt = nil
+          end
+        end
+      end
+
+      if nelt then
+        rule.settings[settings_id] = nelt
+        lua_util.debugm(N, rspamd_config, 'added new settings id %s(%s) to %s',
+            nelt.name, settings_id, rule.prefix)
+      end
+    end
+  end
+end
+
+redis_params = lua_redis.parse_redis_server('neural')
+
+if not redis_params then
+  redis_params = lua_redis.parse_redis_server('fann_redis')
+end
+
+-- Initialization part
+if not (module_config and type(module_config) == 'table') or not redis_params then
+  rspamd_logger.infox(rspamd_config, 'Module is unconfigured')
+  lua_util.disable_module(N, "redis")
+  return
+end
+
+local rules = module_config['rules']
+
+if not rules then
+  -- Use legacy configuration
+  rules = {}
+  rules['default'] = module_config
+end
+
+local id = rspamd_config:register_symbol({
+  name = 'NEURAL_CHECK',
+  type = 'postfilter,nostat',
+  priority = 6,
+  callback = ann_scores_filter
+})
+
+settings = lua_util.override_defaults(settings, module_config)
+settings.rules = {} -- Reset unless validated further in the cycle
+
+-- Check all rules
+for k,r in pairs(rules) do
+  local rule_elt = lua_util.override_defaults(default_options, r)
+  rule_elt['redis'] = redis_params
+  rule_elt['anns'] = {} -- Store ANNs here
+
+  if not rule_elt.prefix then
+    rule_elt.prefix = k
+  end
+  if not rule_elt.name then
+    rule_elt.name = k
+  end
+  if rule_elt.train.max_train then
+    rule_elt.train.max_trains = rule_elt.train.max_train
+  end
+
+  if not rule_elt.profile then rule_elt.profile = {} end
+
+  rspamd_logger.infox(rspamd_config, "register ann rule %s", k)
+  settings.rules[k] = rule_elt
+  rspamd_config:set_metric_symbol({
+    name = rule_elt.symbol_spam,
+    score = 0.0,
+    description = 'Neural network SPAM',
+    group = 'neural'
+  })
+  rspamd_config:register_symbol({
+    name = rule_elt.symbol_spam,
+    type = 'virtual,nostat',
+    parent = id
+  })
+
+  rspamd_config:set_metric_symbol({
+    name = rule_elt.symbol_ham,
+    score = -0.0,
+    description = 'Neural network HAM',
+    group = 'neural'
+  })
+  rspamd_config:register_symbol({
+    name = rule_elt.symbol_ham,
+    type = 'virtual,nostat',
+    parent = id
+  })
+end
+
+rspamd_config:register_symbol({
+  name = 'NEURAL_LEARN',
+  type = 'idempotent,nostat,explicit_disable',
+  priority = 5,
+  callback = ann_push_vector
+})
+
+-- Add training scripts
+for _,rule in pairs(settings.rules) do
+  load_scripts(rule.redis)
+  -- We also need to deal with settings
+  rspamd_config:add_post_init(process_rules_settings)
+  -- This function will check ANNs in Redis when a worker is loaded
+  rspamd_config:add_on_load(function(cfg, ev_base, worker)
+    if worker:is_scanner() then
+      rspamd_config:add_periodic(ev_base, 0.0,
+          function(_, _)
+            return check_anns(worker, cfg, ev_base, rule, process_existing_ann,
+                'try_load_ann')
+          end)
+    end
+
+    if worker:is_primary_controller() then
+      -- We also want to train neural nets when they have enough data
+      rspamd_config:add_periodic(ev_base, 0.0,
+          function(_, _)
+            -- Clean old ANNs
+            cleanup_anns(rule, cfg, ev_base)
+            return check_anns(worker, cfg, ev_base, rule, maybe_train_existing_ann,
+                'try_train_ann')
+          end)
+    end
+  end)
+end

+ 1 - 1
docker-compose.yml

@@ -69,7 +69,7 @@ services:
             - clamd
 
     rspamd-mailcow:
-      image: mailcow/rspamd:1.62
+      image: mailcow/rspamd:1.64
       stop_grace_period: 30s
       depends_on:
         - nginx-mailcow