| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 | 
							- // Copyright 2012 The Go Authors. All rights reserved.
 
- // Use of this source code is governed by a BSD-style
 
- // license that can be found in the LICENSE file.
 
- // +build amd64,!gccgo,!appengine
 
- package curve25519
 
- // These functions are implemented in the .s files. The names of the functions
 
- // in the rest of the file are also taken from the SUPERCOP sources to help
 
- // people following along.
 
- //go:noescape
 
- func cswap(inout *[5]uint64, v uint64)
 
- //go:noescape
 
- func ladderstep(inout *[5][5]uint64)
 
- //go:noescape
 
- func freeze(inout *[5]uint64)
 
- //go:noescape
 
- func mul(dest, a, b *[5]uint64)
 
- //go:noescape
 
- func square(out, in *[5]uint64)
 
- // mladder uses a Montgomery ladder to calculate (xr/zr) *= s.
 
- func mladder(xr, zr *[5]uint64, s *[32]byte) {
 
- 	var work [5][5]uint64
 
- 	work[0] = *xr
 
- 	setint(&work[1], 1)
 
- 	setint(&work[2], 0)
 
- 	work[3] = *xr
 
- 	setint(&work[4], 1)
 
- 	j := uint(6)
 
- 	var prevbit byte
 
- 	for i := 31; i >= 0; i-- {
 
- 		for j < 8 {
 
- 			bit := ((*s)[i] >> j) & 1
 
- 			swap := bit ^ prevbit
 
- 			prevbit = bit
 
- 			cswap(&work[1], uint64(swap))
 
- 			ladderstep(&work)
 
- 			j--
 
- 		}
 
- 		j = 7
 
- 	}
 
- 	*xr = work[1]
 
- 	*zr = work[2]
 
- }
 
- func scalarMult(out, in, base *[32]byte) {
 
- 	var e [32]byte
 
- 	copy(e[:], (*in)[:])
 
- 	e[0] &= 248
 
- 	e[31] &= 127
 
- 	e[31] |= 64
 
- 	var t, z [5]uint64
 
- 	unpack(&t, base)
 
- 	mladder(&t, &z, &e)
 
- 	invert(&z, &z)
 
- 	mul(&t, &t, &z)
 
- 	pack(out, &t)
 
- }
 
- func setint(r *[5]uint64, v uint64) {
 
- 	r[0] = v
 
- 	r[1] = 0
 
- 	r[2] = 0
 
- 	r[3] = 0
 
- 	r[4] = 0
 
- }
 
- // unpack sets r = x where r consists of 5, 51-bit limbs in little-endian
 
- // order.
 
- func unpack(r *[5]uint64, x *[32]byte) {
 
- 	r[0] = uint64(x[0]) |
 
- 		uint64(x[1])<<8 |
 
- 		uint64(x[2])<<16 |
 
- 		uint64(x[3])<<24 |
 
- 		uint64(x[4])<<32 |
 
- 		uint64(x[5])<<40 |
 
- 		uint64(x[6]&7)<<48
 
- 	r[1] = uint64(x[6])>>3 |
 
- 		uint64(x[7])<<5 |
 
- 		uint64(x[8])<<13 |
 
- 		uint64(x[9])<<21 |
 
- 		uint64(x[10])<<29 |
 
- 		uint64(x[11])<<37 |
 
- 		uint64(x[12]&63)<<45
 
- 	r[2] = uint64(x[12])>>6 |
 
- 		uint64(x[13])<<2 |
 
- 		uint64(x[14])<<10 |
 
- 		uint64(x[15])<<18 |
 
- 		uint64(x[16])<<26 |
 
- 		uint64(x[17])<<34 |
 
- 		uint64(x[18])<<42 |
 
- 		uint64(x[19]&1)<<50
 
- 	r[3] = uint64(x[19])>>1 |
 
- 		uint64(x[20])<<7 |
 
- 		uint64(x[21])<<15 |
 
- 		uint64(x[22])<<23 |
 
- 		uint64(x[23])<<31 |
 
- 		uint64(x[24])<<39 |
 
- 		uint64(x[25]&15)<<47
 
- 	r[4] = uint64(x[25])>>4 |
 
- 		uint64(x[26])<<4 |
 
- 		uint64(x[27])<<12 |
 
- 		uint64(x[28])<<20 |
 
- 		uint64(x[29])<<28 |
 
- 		uint64(x[30])<<36 |
 
- 		uint64(x[31]&127)<<44
 
- }
 
- // pack sets out = x where out is the usual, little-endian form of the 5,
 
- // 51-bit limbs in x.
 
- func pack(out *[32]byte, x *[5]uint64) {
 
- 	t := *x
 
- 	freeze(&t)
 
- 	out[0] = byte(t[0])
 
- 	out[1] = byte(t[0] >> 8)
 
- 	out[2] = byte(t[0] >> 16)
 
- 	out[3] = byte(t[0] >> 24)
 
- 	out[4] = byte(t[0] >> 32)
 
- 	out[5] = byte(t[0] >> 40)
 
- 	out[6] = byte(t[0] >> 48)
 
- 	out[6] ^= byte(t[1]<<3) & 0xf8
 
- 	out[7] = byte(t[1] >> 5)
 
- 	out[8] = byte(t[1] >> 13)
 
- 	out[9] = byte(t[1] >> 21)
 
- 	out[10] = byte(t[1] >> 29)
 
- 	out[11] = byte(t[1] >> 37)
 
- 	out[12] = byte(t[1] >> 45)
 
- 	out[12] ^= byte(t[2]<<6) & 0xc0
 
- 	out[13] = byte(t[2] >> 2)
 
- 	out[14] = byte(t[2] >> 10)
 
- 	out[15] = byte(t[2] >> 18)
 
- 	out[16] = byte(t[2] >> 26)
 
- 	out[17] = byte(t[2] >> 34)
 
- 	out[18] = byte(t[2] >> 42)
 
- 	out[19] = byte(t[2] >> 50)
 
- 	out[19] ^= byte(t[3]<<1) & 0xfe
 
- 	out[20] = byte(t[3] >> 7)
 
- 	out[21] = byte(t[3] >> 15)
 
- 	out[22] = byte(t[3] >> 23)
 
- 	out[23] = byte(t[3] >> 31)
 
- 	out[24] = byte(t[3] >> 39)
 
- 	out[25] = byte(t[3] >> 47)
 
- 	out[25] ^= byte(t[4]<<4) & 0xf0
 
- 	out[26] = byte(t[4] >> 4)
 
- 	out[27] = byte(t[4] >> 12)
 
- 	out[28] = byte(t[4] >> 20)
 
- 	out[29] = byte(t[4] >> 28)
 
- 	out[30] = byte(t[4] >> 36)
 
- 	out[31] = byte(t[4] >> 44)
 
- }
 
- // invert calculates r = x^-1 mod p using Fermat's little theorem.
 
- func invert(r *[5]uint64, x *[5]uint64) {
 
- 	var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t [5]uint64
 
- 	square(&z2, x)        /* 2 */
 
- 	square(&t, &z2)       /* 4 */
 
- 	square(&t, &t)        /* 8 */
 
- 	mul(&z9, &t, x)       /* 9 */
 
- 	mul(&z11, &z9, &z2)   /* 11 */
 
- 	square(&t, &z11)      /* 22 */
 
- 	mul(&z2_5_0, &t, &z9) /* 2^5 - 2^0 = 31 */
 
- 	square(&t, &z2_5_0)      /* 2^6 - 2^1 */
 
- 	for i := 1; i < 5; i++ { /* 2^20 - 2^10 */
 
- 		square(&t, &t)
 
- 	}
 
- 	mul(&z2_10_0, &t, &z2_5_0) /* 2^10 - 2^0 */
 
- 	square(&t, &z2_10_0)      /* 2^11 - 2^1 */
 
- 	for i := 1; i < 10; i++ { /* 2^20 - 2^10 */
 
- 		square(&t, &t)
 
- 	}
 
- 	mul(&z2_20_0, &t, &z2_10_0) /* 2^20 - 2^0 */
 
- 	square(&t, &z2_20_0)      /* 2^21 - 2^1 */
 
- 	for i := 1; i < 20; i++ { /* 2^40 - 2^20 */
 
- 		square(&t, &t)
 
- 	}
 
- 	mul(&t, &t, &z2_20_0) /* 2^40 - 2^0 */
 
- 	square(&t, &t)            /* 2^41 - 2^1 */
 
- 	for i := 1; i < 10; i++ { /* 2^50 - 2^10 */
 
- 		square(&t, &t)
 
- 	}
 
- 	mul(&z2_50_0, &t, &z2_10_0) /* 2^50 - 2^0 */
 
- 	square(&t, &z2_50_0)      /* 2^51 - 2^1 */
 
- 	for i := 1; i < 50; i++ { /* 2^100 - 2^50 */
 
- 		square(&t, &t)
 
- 	}
 
- 	mul(&z2_100_0, &t, &z2_50_0) /* 2^100 - 2^0 */
 
- 	square(&t, &z2_100_0)      /* 2^101 - 2^1 */
 
- 	for i := 1; i < 100; i++ { /* 2^200 - 2^100 */
 
- 		square(&t, &t)
 
- 	}
 
- 	mul(&t, &t, &z2_100_0) /* 2^200 - 2^0 */
 
- 	square(&t, &t)            /* 2^201 - 2^1 */
 
- 	for i := 1; i < 50; i++ { /* 2^250 - 2^50 */
 
- 		square(&t, &t)
 
- 	}
 
- 	mul(&t, &t, &z2_50_0) /* 2^250 - 2^0 */
 
- 	square(&t, &t) /* 2^251 - 2^1 */
 
- 	square(&t, &t) /* 2^252 - 2^2 */
 
- 	square(&t, &t) /* 2^253 - 2^3 */
 
- 	square(&t, &t) /* 2^254 - 2^4 */
 
- 	square(&t, &t)   /* 2^255 - 2^5 */
 
- 	mul(r, &t, &z11) /* 2^255 - 21 */
 
- }
 
 
  |