| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905 | // Copyright 2012 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package sshimport (	"bytes"	"crypto"	"crypto/dsa"	"crypto/ecdsa"	"crypto/elliptic"	"crypto/md5"	"crypto/rsa"	"crypto/sha256"	"crypto/x509"	"encoding/asn1"	"encoding/base64"	"encoding/hex"	"encoding/pem"	"errors"	"fmt"	"io"	"math/big"	"strings"	"golang.org/x/crypto/ed25519")// These constants represent the algorithm names for key types supported by this// package.const (	KeyAlgoRSA      = "ssh-rsa"	KeyAlgoDSA      = "ssh-dss"	KeyAlgoECDSA256 = "ecdsa-sha2-nistp256"	KeyAlgoECDSA384 = "ecdsa-sha2-nistp384"	KeyAlgoECDSA521 = "ecdsa-sha2-nistp521"	KeyAlgoED25519  = "ssh-ed25519")// parsePubKey parses a public key of the given algorithm.// Use ParsePublicKey for keys with prepended algorithm.func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) {	switch algo {	case KeyAlgoRSA:		return parseRSA(in)	case KeyAlgoDSA:		return parseDSA(in)	case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:		return parseECDSA(in)	case KeyAlgoED25519:		return parseED25519(in)	case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoED25519v01:		cert, err := parseCert(in, certToPrivAlgo(algo))		if err != nil {			return nil, nil, err		}		return cert, nil, nil	}	return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo)}// parseAuthorizedKey parses a public key in OpenSSH authorized_keys format// (see sshd(8) manual page) once the options and key type fields have been// removed.func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) {	in = bytes.TrimSpace(in)	i := bytes.IndexAny(in, " \t")	if i == -1 {		i = len(in)	}	base64Key := in[:i]	key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key)))	n, err := base64.StdEncoding.Decode(key, base64Key)	if err != nil {		return nil, "", err	}	key = key[:n]	out, err = ParsePublicKey(key)	if err != nil {		return nil, "", err	}	comment = string(bytes.TrimSpace(in[i:]))	return out, comment, nil}// ParseKnownHosts parses an entry in the format of the known_hosts file.//// The known_hosts format is documented in the sshd(8) manual page. This// function will parse a single entry from in. On successful return, marker// will contain the optional marker value (i.e. "cert-authority" or "revoked")// or else be empty, hosts will contain the hosts that this entry matches,// pubKey will contain the public key and comment will contain any trailing// comment at the end of the line. See the sshd(8) manual page for the various// forms that a host string can take.//// The unparsed remainder of the input will be returned in rest. This function// can be called repeatedly to parse multiple entries.//// If no entries were found in the input then err will be io.EOF. Otherwise a// non-nil err value indicates a parse error.func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) {	for len(in) > 0 {		end := bytes.IndexByte(in, '\n')		if end != -1 {			rest = in[end+1:]			in = in[:end]		} else {			rest = nil		}		end = bytes.IndexByte(in, '\r')		if end != -1 {			in = in[:end]		}		in = bytes.TrimSpace(in)		if len(in) == 0 || in[0] == '#' {			in = rest			continue		}		i := bytes.IndexAny(in, " \t")		if i == -1 {			in = rest			continue		}		// Strip out the beginning of the known_host key.		// This is either an optional marker or a (set of) hostname(s).		keyFields := bytes.Fields(in)		if len(keyFields) < 3 || len(keyFields) > 5 {			return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data")		}		// keyFields[0] is either "@cert-authority", "@revoked" or a comma separated		// list of hosts		marker := ""		if keyFields[0][0] == '@' {			marker = string(keyFields[0][1:])			keyFields = keyFields[1:]		}		hosts := string(keyFields[0])		// keyFields[1] contains the key type (e.g. “ssh-rsa”).		// However, that information is duplicated inside the		// base64-encoded key and so is ignored here.		key := bytes.Join(keyFields[2:], []byte(" "))		if pubKey, comment, err = parseAuthorizedKey(key); err != nil {			return "", nil, nil, "", nil, err		}		return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil	}	return "", nil, nil, "", nil, io.EOF}// ParseAuthorizedKeys parses a public key from an authorized_keys// file used in OpenSSH according to the sshd(8) manual page.func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) {	for len(in) > 0 {		end := bytes.IndexByte(in, '\n')		if end != -1 {			rest = in[end+1:]			in = in[:end]		} else {			rest = nil		}		end = bytes.IndexByte(in, '\r')		if end != -1 {			in = in[:end]		}		in = bytes.TrimSpace(in)		if len(in) == 0 || in[0] == '#' {			in = rest			continue		}		i := bytes.IndexAny(in, " \t")		if i == -1 {			in = rest			continue		}		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {			return out, comment, options, rest, nil		}		// No key type recognised. Maybe there's an options field at		// the beginning.		var b byte		inQuote := false		var candidateOptions []string		optionStart := 0		for i, b = range in {			isEnd := !inQuote && (b == ' ' || b == '\t')			if (b == ',' && !inQuote) || isEnd {				if i-optionStart > 0 {					candidateOptions = append(candidateOptions, string(in[optionStart:i]))				}				optionStart = i + 1			}			if isEnd {				break			}			if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) {				inQuote = !inQuote			}		}		for i < len(in) && (in[i] == ' ' || in[i] == '\t') {			i++		}		if i == len(in) {			// Invalid line: unmatched quote			in = rest			continue		}		in = in[i:]		i = bytes.IndexAny(in, " \t")		if i == -1 {			in = rest			continue		}		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {			options = candidateOptions			return out, comment, options, rest, nil		}		in = rest		continue	}	return nil, "", nil, nil, errors.New("ssh: no key found")}// ParsePublicKey parses an SSH public key formatted for use in// the SSH wire protocol according to RFC 4253, section 6.6.func ParsePublicKey(in []byte) (out PublicKey, err error) {	algo, in, ok := parseString(in)	if !ok {		return nil, errShortRead	}	var rest []byte	out, rest, err = parsePubKey(in, string(algo))	if len(rest) > 0 {		return nil, errors.New("ssh: trailing junk in public key")	}	return out, err}// MarshalAuthorizedKey serializes key for inclusion in an OpenSSH// authorized_keys file. The return value ends with newline.func MarshalAuthorizedKey(key PublicKey) []byte {	b := &bytes.Buffer{}	b.WriteString(key.Type())	b.WriteByte(' ')	e := base64.NewEncoder(base64.StdEncoding, b)	e.Write(key.Marshal())	e.Close()	b.WriteByte('\n')	return b.Bytes()}// PublicKey is an abstraction of different types of public keys.type PublicKey interface {	// Type returns the key's type, e.g. "ssh-rsa".	Type() string	// Marshal returns the serialized key data in SSH wire format,	// with the name prefix.	Marshal() []byte	// Verify that sig is a signature on the given data using this	// key. This function will hash the data appropriately first.	Verify(data []byte, sig *Signature) error}// CryptoPublicKey, if implemented by a PublicKey,// returns the underlying crypto.PublicKey form of the key.type CryptoPublicKey interface {	CryptoPublicKey() crypto.PublicKey}// A Signer can create signatures that verify against a public key.type Signer interface {	// PublicKey returns an associated PublicKey instance.	PublicKey() PublicKey	// Sign returns raw signature for the given data. This method	// will apply the hash specified for the keytype to the data.	Sign(rand io.Reader, data []byte) (*Signature, error)}type rsaPublicKey rsa.PublicKeyfunc (r *rsaPublicKey) Type() string {	return "ssh-rsa"}// parseRSA parses an RSA key according to RFC 4253, section 6.6.func parseRSA(in []byte) (out PublicKey, rest []byte, err error) {	var w struct {		E    *big.Int		N    *big.Int		Rest []byte `ssh:"rest"`	}	if err := Unmarshal(in, &w); err != nil {		return nil, nil, err	}	if w.E.BitLen() > 24 {		return nil, nil, errors.New("ssh: exponent too large")	}	e := w.E.Int64()	if e < 3 || e&1 == 0 {		return nil, nil, errors.New("ssh: incorrect exponent")	}	var key rsa.PublicKey	key.E = int(e)	key.N = w.N	return (*rsaPublicKey)(&key), w.Rest, nil}func (r *rsaPublicKey) Marshal() []byte {	e := new(big.Int).SetInt64(int64(r.E))	// RSA publickey struct layout should match the struct used by	// parseRSACert in the x/crypto/ssh/agent package.	wirekey := struct {		Name string		E    *big.Int		N    *big.Int	}{		KeyAlgoRSA,		e,		r.N,	}	return Marshal(&wirekey)}func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {	if sig.Format != r.Type() {		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type())	}	h := crypto.SHA1.New()	h.Write(data)	digest := h.Sum(nil)	return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), crypto.SHA1, digest, sig.Blob)}func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {	return (*rsa.PublicKey)(r)}type dsaPublicKey dsa.PublicKeyfunc (r *dsaPublicKey) Type() string {	return "ssh-dss"}// parseDSA parses an DSA key according to RFC 4253, section 6.6.func parseDSA(in []byte) (out PublicKey, rest []byte, err error) {	var w struct {		P, Q, G, Y *big.Int		Rest       []byte `ssh:"rest"`	}	if err := Unmarshal(in, &w); err != nil {		return nil, nil, err	}	key := &dsaPublicKey{		Parameters: dsa.Parameters{			P: w.P,			Q: w.Q,			G: w.G,		},		Y: w.Y,	}	return key, w.Rest, nil}func (k *dsaPublicKey) Marshal() []byte {	// DSA publickey struct layout should match the struct used by	// parseDSACert in the x/crypto/ssh/agent package.	w := struct {		Name       string		P, Q, G, Y *big.Int	}{		k.Type(),		k.P,		k.Q,		k.G,		k.Y,	}	return Marshal(&w)}func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error {	if sig.Format != k.Type() {		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())	}	h := crypto.SHA1.New()	h.Write(data)	digest := h.Sum(nil)	// Per RFC 4253, section 6.6,	// The value for 'dss_signature_blob' is encoded as a string containing	// r, followed by s (which are 160-bit integers, without lengths or	// padding, unsigned, and in network byte order).	// For DSS purposes, sig.Blob should be exactly 40 bytes in length.	if len(sig.Blob) != 40 {		return errors.New("ssh: DSA signature parse error")	}	r := new(big.Int).SetBytes(sig.Blob[:20])	s := new(big.Int).SetBytes(sig.Blob[20:])	if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) {		return nil	}	return errors.New("ssh: signature did not verify")}func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey {	return (*dsa.PublicKey)(k)}type dsaPrivateKey struct {	*dsa.PrivateKey}func (k *dsaPrivateKey) PublicKey() PublicKey {	return (*dsaPublicKey)(&k.PrivateKey.PublicKey)}func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) {	h := crypto.SHA1.New()	h.Write(data)	digest := h.Sum(nil)	r, s, err := dsa.Sign(rand, k.PrivateKey, digest)	if err != nil {		return nil, err	}	sig := make([]byte, 40)	rb := r.Bytes()	sb := s.Bytes()	copy(sig[20-len(rb):20], rb)	copy(sig[40-len(sb):], sb)	return &Signature{		Format: k.PublicKey().Type(),		Blob:   sig,	}, nil}type ecdsaPublicKey ecdsa.PublicKeyfunc (key *ecdsaPublicKey) Type() string {	return "ecdsa-sha2-" + key.nistID()}func (key *ecdsaPublicKey) nistID() string {	switch key.Params().BitSize {	case 256:		return "nistp256"	case 384:		return "nistp384"	case 521:		return "nistp521"	}	panic("ssh: unsupported ecdsa key size")}type ed25519PublicKey ed25519.PublicKeyfunc (key ed25519PublicKey) Type() string {	return KeyAlgoED25519}func parseED25519(in []byte) (out PublicKey, rest []byte, err error) {	var w struct {		KeyBytes []byte		Rest     []byte `ssh:"rest"`	}	if err := Unmarshal(in, &w); err != nil {		return nil, nil, err	}	key := ed25519.PublicKey(w.KeyBytes)	return (ed25519PublicKey)(key), w.Rest, nil}func (key ed25519PublicKey) Marshal() []byte {	w := struct {		Name     string		KeyBytes []byte	}{		KeyAlgoED25519,		[]byte(key),	}	return Marshal(&w)}func (key ed25519PublicKey) Verify(b []byte, sig *Signature) error {	if sig.Format != key.Type() {		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, key.Type())	}	edKey := (ed25519.PublicKey)(key)	if ok := ed25519.Verify(edKey, b, sig.Blob); !ok {		return errors.New("ssh: signature did not verify")	}	return nil}func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey {	return ed25519.PublicKey(k)}func supportedEllipticCurve(curve elliptic.Curve) bool {	return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521()}// ecHash returns the hash to match the given elliptic curve, see RFC// 5656, section 6.2.1func ecHash(curve elliptic.Curve) crypto.Hash {	bitSize := curve.Params().BitSize	switch {	case bitSize <= 256:		return crypto.SHA256	case bitSize <= 384:		return crypto.SHA384	}	return crypto.SHA512}// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) {	var w struct {		Curve    string		KeyBytes []byte		Rest     []byte `ssh:"rest"`	}	if err := Unmarshal(in, &w); err != nil {		return nil, nil, err	}	key := new(ecdsa.PublicKey)	switch w.Curve {	case "nistp256":		key.Curve = elliptic.P256()	case "nistp384":		key.Curve = elliptic.P384()	case "nistp521":		key.Curve = elliptic.P521()	default:		return nil, nil, errors.New("ssh: unsupported curve")	}	key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)	if key.X == nil || key.Y == nil {		return nil, nil, errors.New("ssh: invalid curve point")	}	return (*ecdsaPublicKey)(key), w.Rest, nil}func (key *ecdsaPublicKey) Marshal() []byte {	// See RFC 5656, section 3.1.	keyBytes := elliptic.Marshal(key.Curve, key.X, key.Y)	// ECDSA publickey struct layout should match the struct used by	// parseECDSACert in the x/crypto/ssh/agent package.	w := struct {		Name string		ID   string		Key  []byte	}{		key.Type(),		key.nistID(),		keyBytes,	}	return Marshal(&w)}func (key *ecdsaPublicKey) Verify(data []byte, sig *Signature) error {	if sig.Format != key.Type() {		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, key.Type())	}	h := ecHash(key.Curve).New()	h.Write(data)	digest := h.Sum(nil)	// Per RFC 5656, section 3.1.2,	// The ecdsa_signature_blob value has the following specific encoding:	//    mpint    r	//    mpint    s	var ecSig struct {		R *big.Int		S *big.Int	}	if err := Unmarshal(sig.Blob, &ecSig); err != nil {		return err	}	if ecdsa.Verify((*ecdsa.PublicKey)(key), digest, ecSig.R, ecSig.S) {		return nil	}	return errors.New("ssh: signature did not verify")}func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey {	return (*ecdsa.PublicKey)(k)}// NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,// *ecdsa.PrivateKey or any other crypto.Signer and returns a corresponding// Signer instance. ECDSA keys must use P-256, P-384 or P-521.func NewSignerFromKey(key interface{}) (Signer, error) {	switch key := key.(type) {	case crypto.Signer:		return NewSignerFromSigner(key)	case *dsa.PrivateKey:		return &dsaPrivateKey{key}, nil	default:		return nil, fmt.Errorf("ssh: unsupported key type %T", key)	}}type wrappedSigner struct {	signer crypto.Signer	pubKey PublicKey}// NewSignerFromSigner takes any crypto.Signer implementation and// returns a corresponding Signer interface. This can be used, for// example, with keys kept in hardware modules.func NewSignerFromSigner(signer crypto.Signer) (Signer, error) {	pubKey, err := NewPublicKey(signer.Public())	if err != nil {		return nil, err	}	return &wrappedSigner{signer, pubKey}, nil}func (s *wrappedSigner) PublicKey() PublicKey {	return s.pubKey}func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {	var hashFunc crypto.Hash	switch key := s.pubKey.(type) {	case *rsaPublicKey, *dsaPublicKey:		hashFunc = crypto.SHA1	case *ecdsaPublicKey:		hashFunc = ecHash(key.Curve)	case ed25519PublicKey:	default:		return nil, fmt.Errorf("ssh: unsupported key type %T", key)	}	var digest []byte	if hashFunc != 0 {		h := hashFunc.New()		h.Write(data)		digest = h.Sum(nil)	} else {		digest = data	}	signature, err := s.signer.Sign(rand, digest, hashFunc)	if err != nil {		return nil, err	}	// crypto.Signer.Sign is expected to return an ASN.1-encoded signature	// for ECDSA and DSA, but that's not the encoding expected by SSH, so	// re-encode.	switch s.pubKey.(type) {	case *ecdsaPublicKey, *dsaPublicKey:		type asn1Signature struct {			R, S *big.Int		}		asn1Sig := new(asn1Signature)		_, err := asn1.Unmarshal(signature, asn1Sig)		if err != nil {			return nil, err		}		switch s.pubKey.(type) {		case *ecdsaPublicKey:			signature = Marshal(asn1Sig)		case *dsaPublicKey:			signature = make([]byte, 40)			r := asn1Sig.R.Bytes()			s := asn1Sig.S.Bytes()			copy(signature[20-len(r):20], r)			copy(signature[40-len(s):40], s)		}	}	return &Signature{		Format: s.pubKey.Type(),		Blob:   signature,	}, nil}// NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,// or ed25519.PublicKey returns a corresponding PublicKey instance.// ECDSA keys must use P-256, P-384 or P-521.func NewPublicKey(key interface{}) (PublicKey, error) {	switch key := key.(type) {	case *rsa.PublicKey:		return (*rsaPublicKey)(key), nil	case *ecdsa.PublicKey:		if !supportedEllipticCurve(key.Curve) {			return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported.")		}		return (*ecdsaPublicKey)(key), nil	case *dsa.PublicKey:		return (*dsaPublicKey)(key), nil	case ed25519.PublicKey:		return (ed25519PublicKey)(key), nil	default:		return nil, fmt.Errorf("ssh: unsupported key type %T", key)	}}// ParsePrivateKey returns a Signer from a PEM encoded private key. It supports// the same keys as ParseRawPrivateKey.func ParsePrivateKey(pemBytes []byte) (Signer, error) {	key, err := ParseRawPrivateKey(pemBytes)	if err != nil {		return nil, err	}	return NewSignerFromKey(key)}// encryptedBlock tells whether a private key is// encrypted by examining its Proc-Type header// for a mention of ENCRYPTED// according to RFC 1421 Section 4.6.1.1.func encryptedBlock(block *pem.Block) bool {	return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED")}// ParseRawPrivateKey returns a private key from a PEM encoded private key. It// supports RSA (PKCS#1), DSA (OpenSSL), and ECDSA private keys.func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {	block, _ := pem.Decode(pemBytes)	if block == nil {		return nil, errors.New("ssh: no key found")	}	if encryptedBlock(block) {		return nil, errors.New("ssh: cannot decode encrypted private keys")	}	switch block.Type {	case "RSA PRIVATE KEY":		return x509.ParsePKCS1PrivateKey(block.Bytes)	case "EC PRIVATE KEY":		return x509.ParseECPrivateKey(block.Bytes)	case "DSA PRIVATE KEY":		return ParseDSAPrivateKey(block.Bytes)	case "OPENSSH PRIVATE KEY":		return parseOpenSSHPrivateKey(block.Bytes)	default:		return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)	}}// ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as// specified by the OpenSSL DSA man page.func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) {	var k struct {		Version int		P       *big.Int		Q       *big.Int		G       *big.Int		Priv    *big.Int		Pub     *big.Int	}	rest, err := asn1.Unmarshal(der, &k)	if err != nil {		return nil, errors.New("ssh: failed to parse DSA key: " + err.Error())	}	if len(rest) > 0 {		return nil, errors.New("ssh: garbage after DSA key")	}	return &dsa.PrivateKey{		PublicKey: dsa.PublicKey{			Parameters: dsa.Parameters{				P: k.P,				Q: k.Q,				G: k.G,			},			Y: k.Priv,		},		X: k.Pub,	}, nil}// Implemented based on the documentation at// https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.keyfunc parseOpenSSHPrivateKey(key []byte) (*ed25519.PrivateKey, error) {	magic := append([]byte("openssh-key-v1"), 0)	if !bytes.Equal(magic, key[0:len(magic)]) {		return nil, errors.New("ssh: invalid openssh private key format")	}	remaining := key[len(magic):]	var w struct {		CipherName   string		KdfName      string		KdfOpts      string		NumKeys      uint32		PubKey       []byte		PrivKeyBlock []byte	}	if err := Unmarshal(remaining, &w); err != nil {		return nil, err	}	pk1 := struct {		Check1  uint32		Check2  uint32		Keytype string		Pub     []byte		Priv    []byte		Comment string		Pad     []byte `ssh:"rest"`	}{}	if err := Unmarshal(w.PrivKeyBlock, &pk1); err != nil {		return nil, err	}	if pk1.Check1 != pk1.Check2 {		return nil, errors.New("ssh: checkint mismatch")	}	// we only handle ed25519 keys currently	if pk1.Keytype != KeyAlgoED25519 {		return nil, errors.New("ssh: unhandled key type")	}	for i, b := range pk1.Pad {		if int(b) != i+1 {			return nil, errors.New("ssh: padding not as expected")		}	}	if len(pk1.Priv) != ed25519.PrivateKeySize {		return nil, errors.New("ssh: private key unexpected length")	}	pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))	copy(pk, pk1.Priv)	return &pk, nil}// FingerprintLegacyMD5 returns the user presentation of the key's// fingerprint as described by RFC 4716 section 4.func FingerprintLegacyMD5(pubKey PublicKey) string {	md5sum := md5.Sum(pubKey.Marshal())	hexarray := make([]string, len(md5sum))	for i, c := range md5sum {		hexarray[i] = hex.EncodeToString([]byte{c})	}	return strings.Join(hexarray, ":")}// FingerprintSHA256 returns the user presentation of the key's// fingerprint as unpadded base64 encoded sha256 hash.// This format was introduced from OpenSSH 6.8.// https://www.openssh.com/txt/release-6.8// https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding)func FingerprintSHA256(pubKey PublicKey) string {	sha256sum := sha256.Sum256(pubKey.Marshal())	hash := base64.RawStdEncoding.EncodeToString(sha256sum[:])	return "SHA256:" + hash}
 |