| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460 | // Copyright 2013 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package sshimport (	"crypto/rand"	"errors"	"fmt"	"io"	"log"	"net"	"sync")// debugHandshake, if set, prints messages sent and received.  Key// exchange messages are printed as if DH were used, so the debug// messages are wrong when using ECDH.const debugHandshake = false// keyingTransport is a packet based transport that supports key// changes. It need not be thread-safe. It should pass through// msgNewKeys in both directions.type keyingTransport interface {	packetConn	// prepareKeyChange sets up a key change. The key change for a	// direction will be effected if a msgNewKeys message is sent	// or received.	prepareKeyChange(*algorithms, *kexResult) error}// handshakeTransport implements rekeying on top of a keyingTransport// and offers a thread-safe writePacket() interface.type handshakeTransport struct {	conn   keyingTransport	config *Config	serverVersion []byte	clientVersion []byte	// hostKeys is non-empty if we are the server. In that case,	// it contains all host keys that can be used to sign the	// connection.	hostKeys []Signer	// hostKeyAlgorithms is non-empty if we are the client. In that case,	// we accept these key types from the server as host key.	hostKeyAlgorithms []string	// On read error, incoming is closed, and readError is set.	incoming  chan []byte	readError error	// data for host key checking	hostKeyCallback func(hostname string, remote net.Addr, key PublicKey) error	dialAddress     string	remoteAddr      net.Addr	readSinceKex uint64	// Protects the writing side of the connection	mu              sync.Mutex	cond            *sync.Cond	sentInitPacket  []byte	sentInitMsg     *kexInitMsg	writtenSinceKex uint64	writeError      error	// The session ID or nil if first kex did not complete yet.	sessionID []byte}func newHandshakeTransport(conn keyingTransport, config *Config, clientVersion, serverVersion []byte) *handshakeTransport {	t := &handshakeTransport{		conn:          conn,		serverVersion: serverVersion,		clientVersion: clientVersion,		incoming:      make(chan []byte, 16),		config:        config,	}	t.cond = sync.NewCond(&t.mu)	return t}func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ClientConfig, dialAddr string, addr net.Addr) *handshakeTransport {	t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)	t.dialAddress = dialAddr	t.remoteAddr = addr	t.hostKeyCallback = config.HostKeyCallback	if config.HostKeyAlgorithms != nil {		t.hostKeyAlgorithms = config.HostKeyAlgorithms	} else {		t.hostKeyAlgorithms = supportedHostKeyAlgos	}	go t.readLoop()	return t}func newServerTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ServerConfig) *handshakeTransport {	t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)	t.hostKeys = config.hostKeys	go t.readLoop()	return t}func (t *handshakeTransport) getSessionID() []byte {	return t.sessionID}func (t *handshakeTransport) id() string {	if len(t.hostKeys) > 0 {		return "server"	}	return "client"}func (t *handshakeTransport) readPacket() ([]byte, error) {	p, ok := <-t.incoming	if !ok {		return nil, t.readError	}	return p, nil}func (t *handshakeTransport) readLoop() {	for {		p, err := t.readOnePacket()		if err != nil {			t.readError = err			close(t.incoming)			break		}		if p[0] == msgIgnore || p[0] == msgDebug {			continue		}		t.incoming <- p	}	// If we can't read, declare the writing part dead too.	t.mu.Lock()	defer t.mu.Unlock()	if t.writeError == nil {		t.writeError = t.readError	}	t.cond.Broadcast()}func (t *handshakeTransport) readOnePacket() ([]byte, error) {	if t.readSinceKex > t.config.RekeyThreshold {		if err := t.requestKeyChange(); err != nil {			return nil, err		}	}	p, err := t.conn.readPacket()	if err != nil {		return nil, err	}	t.readSinceKex += uint64(len(p))	if debugHandshake {		if p[0] == msgChannelData || p[0] == msgChannelExtendedData {			log.Printf("%s got data (packet %d bytes)", t.id(), len(p))		} else {			msg, err := decode(p)			log.Printf("%s got %T %v (%v)", t.id(), msg, msg, err)		}	}	if p[0] != msgKexInit {		return p, nil	}	t.mu.Lock()	firstKex := t.sessionID == nil	err = t.enterKeyExchangeLocked(p)	if err != nil {		// drop connection		t.conn.Close()		t.writeError = err	}	if debugHandshake {		log.Printf("%s exited key exchange (first %v), err %v", t.id(), firstKex, err)	}	// Unblock writers.	t.sentInitMsg = nil	t.sentInitPacket = nil	t.cond.Broadcast()	t.writtenSinceKex = 0	t.mu.Unlock()	if err != nil {		return nil, err	}	t.readSinceKex = 0	// By default, a key exchange is hidden from higher layers by	// translating it into msgIgnore.	successPacket := []byte{msgIgnore}	if firstKex {		// sendKexInit() for the first kex waits for		// msgNewKeys so the authentication process is		// guaranteed to happen over an encrypted transport.		successPacket = []byte{msgNewKeys}	}	return successPacket, nil}// keyChangeCategory describes whether a key exchange is the first on a// connection, or a subsequent one.type keyChangeCategory boolconst (	firstKeyExchange      keyChangeCategory = true	subsequentKeyExchange keyChangeCategory = false)// sendKexInit sends a key change message, and returns the message// that was sent. After initiating the key change, all writes will be// blocked until the change is done, and a failed key change will// close the underlying transport. This function is safe for// concurrent use by multiple goroutines.func (t *handshakeTransport) sendKexInit(isFirst keyChangeCategory) error {	var err error	t.mu.Lock()	// If this is the initial key change, but we already have a sessionID,	// then do nothing because the key exchange has already completed	// asynchronously.	if !isFirst || t.sessionID == nil {		_, _, err = t.sendKexInitLocked(isFirst)	}	t.mu.Unlock()	if err != nil {		return err	}	if isFirst {		if packet, err := t.readPacket(); err != nil {			return err		} else if packet[0] != msgNewKeys {			return unexpectedMessageError(msgNewKeys, packet[0])		}	}	return nil}func (t *handshakeTransport) requestInitialKeyChange() error {	return t.sendKexInit(firstKeyExchange)}func (t *handshakeTransport) requestKeyChange() error {	return t.sendKexInit(subsequentKeyExchange)}// sendKexInitLocked sends a key change message. t.mu must be locked// while this happens.func (t *handshakeTransport) sendKexInitLocked(isFirst keyChangeCategory) (*kexInitMsg, []byte, error) {	// kexInits may be sent either in response to the other side,	// or because our side wants to initiate a key change, so we	// may have already sent a kexInit. In that case, don't send a	// second kexInit.	if t.sentInitMsg != nil {		return t.sentInitMsg, t.sentInitPacket, nil	}	msg := &kexInitMsg{		KexAlgos:                t.config.KeyExchanges,		CiphersClientServer:     t.config.Ciphers,		CiphersServerClient:     t.config.Ciphers,		MACsClientServer:        t.config.MACs,		MACsServerClient:        t.config.MACs,		CompressionClientServer: supportedCompressions,		CompressionServerClient: supportedCompressions,	}	io.ReadFull(rand.Reader, msg.Cookie[:])	if len(t.hostKeys) > 0 {		for _, k := range t.hostKeys {			msg.ServerHostKeyAlgos = append(				msg.ServerHostKeyAlgos, k.PublicKey().Type())		}	} else {		msg.ServerHostKeyAlgos = t.hostKeyAlgorithms	}	packet := Marshal(msg)	// writePacket destroys the contents, so save a copy.	packetCopy := make([]byte, len(packet))	copy(packetCopy, packet)	if err := t.conn.writePacket(packetCopy); err != nil {		return nil, nil, err	}	t.sentInitMsg = msg	t.sentInitPacket = packet	return msg, packet, nil}func (t *handshakeTransport) writePacket(p []byte) error {	t.mu.Lock()	defer t.mu.Unlock()	if t.writtenSinceKex > t.config.RekeyThreshold {		t.sendKexInitLocked(subsequentKeyExchange)	}	for t.sentInitMsg != nil && t.writeError == nil {		t.cond.Wait()	}	if t.writeError != nil {		return t.writeError	}	t.writtenSinceKex += uint64(len(p))	switch p[0] {	case msgKexInit:		return errors.New("ssh: only handshakeTransport can send kexInit")	case msgNewKeys:		return errors.New("ssh: only handshakeTransport can send newKeys")	default:		return t.conn.writePacket(p)	}}func (t *handshakeTransport) Close() error {	return t.conn.Close()}// enterKeyExchange runs the key exchange. t.mu must be held while running this.func (t *handshakeTransport) enterKeyExchangeLocked(otherInitPacket []byte) error {	if debugHandshake {		log.Printf("%s entered key exchange", t.id())	}	myInit, myInitPacket, err := t.sendKexInitLocked(subsequentKeyExchange)	if err != nil {		return err	}	otherInit := &kexInitMsg{}	if err := Unmarshal(otherInitPacket, otherInit); err != nil {		return err	}	magics := handshakeMagics{		clientVersion: t.clientVersion,		serverVersion: t.serverVersion,		clientKexInit: otherInitPacket,		serverKexInit: myInitPacket,	}	clientInit := otherInit	serverInit := myInit	if len(t.hostKeys) == 0 {		clientInit = myInit		serverInit = otherInit		magics.clientKexInit = myInitPacket		magics.serverKexInit = otherInitPacket	}	algs, err := findAgreedAlgorithms(clientInit, serverInit)	if err != nil {		return err	}	// We don't send FirstKexFollows, but we handle receiving it.	//	// RFC 4253 section 7 defines the kex and the agreement method for	// first_kex_packet_follows. It states that the guessed packet	// should be ignored if the "kex algorithm and/or the host	// key algorithm is guessed wrong (server and client have	// different preferred algorithm), or if any of the other	// algorithms cannot be agreed upon". The other algorithms have	// already been checked above so the kex algorithm and host key	// algorithm are checked here.	if otherInit.FirstKexFollows && (clientInit.KexAlgos[0] != serverInit.KexAlgos[0] || clientInit.ServerHostKeyAlgos[0] != serverInit.ServerHostKeyAlgos[0]) {		// other side sent a kex message for the wrong algorithm,		// which we have to ignore.		if _, err := t.conn.readPacket(); err != nil {			return err		}	}	kex, ok := kexAlgoMap[algs.kex]	if !ok {		return fmt.Errorf("ssh: unexpected key exchange algorithm %v", algs.kex)	}	var result *kexResult	if len(t.hostKeys) > 0 {		result, err = t.server(kex, algs, &magics)	} else {		result, err = t.client(kex, algs, &magics)	}	if err != nil {		return err	}	if t.sessionID == nil {		t.sessionID = result.H	}	result.SessionID = t.sessionID	t.conn.prepareKeyChange(algs, result)	if err = t.conn.writePacket([]byte{msgNewKeys}); err != nil {		return err	}	if packet, err := t.conn.readPacket(); err != nil {		return err	} else if packet[0] != msgNewKeys {		return unexpectedMessageError(msgNewKeys, packet[0])	}	return nil}func (t *handshakeTransport) server(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {	var hostKey Signer	for _, k := range t.hostKeys {		if algs.hostKey == k.PublicKey().Type() {			hostKey = k		}	}	r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey)	return r, err}func (t *handshakeTransport) client(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {	result, err := kex.Client(t.conn, t.config.Rand, magics)	if err != nil {		return nil, err	}	hostKey, err := ParsePublicKey(result.HostKey)	if err != nil {		return nil, err	}	if err := verifyHostKeySignature(hostKey, result); err != nil {		return nil, err	}	if t.hostKeyCallback != nil {		err = t.hostKeyCallback(t.dialAddress, t.remoteAddr, hostKey)		if err != nil {			return nil, err		}	}	return result, nil}
 |