| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413 | // Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package bufio// Simple byte buffer for marshaling data.import (	"bytes"	"errors"	"io"	"unicode/utf8")// A Buffer is a variable-sized buffer of bytes with Read and Write methods.// The zero value for Buffer is an empty buffer ready to use.type Buffer struct {	buf       []byte            // contents are the bytes buf[off : len(buf)]	off       int               // read at &buf[off], write at &buf[len(buf)]	runeBytes [utf8.UTFMax]byte // avoid allocation of slice on each WriteByte or Rune	bootstrap [64]byte          // memory to hold first slice; helps small buffers (Printf) avoid allocation.	lastRead  readOp            // last read operation, so that Unread* can work correctly.}// The readOp constants describe the last action performed on// the buffer, so that UnreadRune and UnreadByte can// check for invalid usage.type readOp intconst (	opInvalid  readOp = iota // Non-read operation.	opReadRune               // Read rune.	opRead                   // Any other read operation.)// ErrTooLarge is passed to panic if memory cannot be allocated to store data in a buffer.var ErrTooLarge = errors.New("bytes.Buffer: too large")// Bytes returns a slice of the contents of the unread portion of the buffer;// len(b.Bytes()) == b.Len().  If the caller changes the contents of the// returned slice, the contents of the buffer will change provided there// are no intervening method calls on the Buffer.func (b *Buffer) Bytes() []byte { return b.buf[b.off:] }// String returns the contents of the unread portion of the buffer// as a string.  If the Buffer is a nil pointer, it returns "<nil>".func (b *Buffer) String() string {	if b == nil {		// Special case, useful in debugging.		return "<nil>"	}	return string(b.buf[b.off:])}// Len returns the number of bytes of the unread portion of the buffer;// b.Len() == len(b.Bytes()).func (b *Buffer) Len() int { return len(b.buf) - b.off }// Truncate discards all but the first n unread bytes from the buffer.// It panics if n is negative or greater than the length of the buffer.func (b *Buffer) Truncate(n int) {	b.lastRead = opInvalid	switch {	case n < 0 || n > b.Len():		panic("bytes.Buffer: truncation out of range")	case n == 0:		// Reuse buffer space.		b.off = 0	}	b.buf = b.buf[0 : b.off+n]}// Reset resets the buffer so it has no content.// b.Reset() is the same as b.Truncate(0).func (b *Buffer) Reset() { b.Truncate(0) }// grow grows the buffer to guarantee space for n more bytes.// It returns the index where bytes should be written.// If the buffer can't grow it will panic with ErrTooLarge.func (b *Buffer) grow(n int) int {	m := b.Len()	// If buffer is empty, reset to recover space.	if m == 0 && b.off != 0 {		b.Truncate(0)	}	if len(b.buf)+n > cap(b.buf) {		var buf []byte		if b.buf == nil && n <= len(b.bootstrap) {			buf = b.bootstrap[0:]		} else if m+n <= cap(b.buf)/2 {			// We can slide things down instead of allocating a new			// slice. We only need m+n <= cap(b.buf) to slide, but			// we instead let capacity get twice as large so we			// don't spend all our time copying.			copy(b.buf[:], b.buf[b.off:])			buf = b.buf[:m]		} else {			// not enough space anywhere			buf = makeSlice(2*cap(b.buf) + n)			copy(buf, b.buf[b.off:])		}		b.buf = buf		b.off = 0	}	b.buf = b.buf[0 : b.off+m+n]	return b.off + m}// Grow grows the buffer's capacity, if necessary, to guarantee space for// another n bytes. After Grow(n), at least n bytes can be written to the// buffer without another allocation.// If n is negative, Grow will panic.// If the buffer can't grow it will panic with ErrTooLarge.func (b *Buffer) Grow(n int) {	if n < 0 {		panic("bytes.Buffer.Grow: negative count")	}	m := b.grow(n)	b.buf = b.buf[0:m]}// Write appends the contents of p to the buffer, growing the buffer as// needed. The return value n is the length of p; err is always nil. If the// buffer becomes too large, Write will panic with ErrTooLarge.func (b *Buffer) Write(p []byte) (n int, err error) {	b.lastRead = opInvalid	m := b.grow(len(p))	return copy(b.buf[m:], p), nil}// WriteString appends the contents of s to the buffer, growing the buffer as// needed. The return value n is the length of s; err is always nil. If the// buffer becomes too large, WriteString will panic with ErrTooLarge.func (b *Buffer) WriteString(s string) (n int, err error) {	b.lastRead = opInvalid	m := b.grow(len(s))	return copy(b.buf[m:], s), nil}// MinRead is the minimum slice size passed to a Read call by// Buffer.ReadFrom.  As long as the Buffer has at least MinRead bytes beyond// what is required to hold the contents of r, ReadFrom will not grow the// underlying buffer.const MinRead = 512// ReadFrom reads data from r until EOF and appends it to the buffer, growing// the buffer as needed. The return value n is the number of bytes read. Any// error except io.EOF encountered during the read is also returned. If the// buffer becomes too large, ReadFrom will panic with ErrTooLarge.func (b *Buffer) ReadFrom(r io.Reader) (n int64, err error) {	b.lastRead = opInvalid	// If buffer is empty, reset to recover space.	if b.off >= len(b.buf) {		b.Truncate(0)	}	for {		if free := cap(b.buf) - len(b.buf); free < MinRead {			// not enough space at end			newBuf := b.buf			if b.off+free < MinRead {				// not enough space using beginning of buffer;				// double buffer capacity				newBuf = makeSlice(2*cap(b.buf) + MinRead)			}			copy(newBuf, b.buf[b.off:])			b.buf = newBuf[:len(b.buf)-b.off]			b.off = 0		}		m, e := r.Read(b.buf[len(b.buf):cap(b.buf)])		b.buf = b.buf[0 : len(b.buf)+m]		n += int64(m)		if e == io.EOF {			break		}		if e != nil {			return n, e		}	}	return n, nil // err is EOF, so return nil explicitly}// makeSlice allocates a slice of size n. If the allocation fails, it panics// with ErrTooLarge.func makeSlice(n int) []byte {	// If the make fails, give a known error.	defer func() {		if recover() != nil {			panic(ErrTooLarge)		}	}()	return make([]byte, n)}// WriteTo writes data to w until the buffer is drained or an error occurs.// The return value n is the number of bytes written; it always fits into an// int, but it is int64 to match the io.WriterTo interface. Any error// encountered during the write is also returned.func (b *Buffer) WriteTo(w io.Writer) (n int64, err error) {	b.lastRead = opInvalid	if b.off < len(b.buf) {		nBytes := b.Len()		m, e := w.Write(b.buf[b.off:])		if m > nBytes {			panic("bytes.Buffer.WriteTo: invalid Write count")		}		b.off += m		n = int64(m)		if e != nil {			return n, e		}		// all bytes should have been written, by definition of		// Write method in io.Writer		if m != nBytes {			return n, io.ErrShortWrite		}	}	// Buffer is now empty; reset.	b.Truncate(0)	return}// WriteByte appends the byte c to the buffer, growing the buffer as needed.// The returned error is always nil, but is included to match bufio.Writer's// WriteByte. If the buffer becomes too large, WriteByte will panic with// ErrTooLarge.func (b *Buffer) WriteByte(c byte) error {	b.lastRead = opInvalid	m := b.grow(1)	b.buf[m] = c	return nil}// WriteRune appends the UTF-8 encoding of Unicode code point r to the// buffer, returning its length and an error, which is always nil but is// included to match bufio.Writer's WriteRune. The buffer is grown as needed;// if it becomes too large, WriteRune will panic with ErrTooLarge.func (b *Buffer) WriteRune(r rune) (n int, err error) {	if r < utf8.RuneSelf {		b.WriteByte(byte(r))		return 1, nil	}	n = utf8.EncodeRune(b.runeBytes[0:], r)	b.Write(b.runeBytes[0:n])	return n, nil}// Read reads the next len(p) bytes from the buffer or until the buffer// is drained.  The return value n is the number of bytes read.  If the// buffer has no data to return, err is io.EOF (unless len(p) is zero);// otherwise it is nil.func (b *Buffer) Read(p []byte) (n int, err error) {	b.lastRead = opInvalid	if b.off >= len(b.buf) {		// Buffer is empty, reset to recover space.		b.Truncate(0)		if len(p) == 0 {			return		}		return 0, io.EOF	}	n = copy(p, b.buf[b.off:])	b.off += n	if n > 0 {		b.lastRead = opRead	}	return}// Next returns a slice containing the next n bytes from the buffer,// advancing the buffer as if the bytes had been returned by Read.// If there are fewer than n bytes in the buffer, Next returns the entire buffer.// The slice is only valid until the next call to a read or write method.func (b *Buffer) Next(n int) []byte {	b.lastRead = opInvalid	m := b.Len()	if n > m {		n = m	}	data := b.buf[b.off : b.off+n]	b.off += n	if n > 0 {		b.lastRead = opRead	}	return data}// ReadByte reads and returns the next byte from the buffer.// If no byte is available, it returns error io.EOF.func (b *Buffer) ReadByte() (c byte, err error) {	b.lastRead = opInvalid	if b.off >= len(b.buf) {		// Buffer is empty, reset to recover space.		b.Truncate(0)		return 0, io.EOF	}	c = b.buf[b.off]	b.off++	b.lastRead = opRead	return c, nil}// ReadRune reads and returns the next UTF-8-encoded// Unicode code point from the buffer.// If no bytes are available, the error returned is io.EOF.// If the bytes are an erroneous UTF-8 encoding, it// consumes one byte and returns U+FFFD, 1.func (b *Buffer) ReadRune() (r rune, size int, err error) {	b.lastRead = opInvalid	if b.off >= len(b.buf) {		// Buffer is empty, reset to recover space.		b.Truncate(0)		return 0, 0, io.EOF	}	b.lastRead = opReadRune	c := b.buf[b.off]	if c < utf8.RuneSelf {		b.off++		return rune(c), 1, nil	}	r, n := utf8.DecodeRune(b.buf[b.off:])	b.off += n	return r, n, nil}// UnreadRune unreads the last rune returned by ReadRune.// If the most recent read or write operation on the buffer was// not a ReadRune, UnreadRune returns an error.  (In this regard// it is stricter than UnreadByte, which will unread the last byte// from any read operation.)func (b *Buffer) UnreadRune() error {	if b.lastRead != opReadRune {		return errors.New("bytes.Buffer: UnreadRune: previous operation was not ReadRune")	}	b.lastRead = opInvalid	if b.off > 0 {		_, n := utf8.DecodeLastRune(b.buf[0:b.off])		b.off -= n	}	return nil}// UnreadByte unreads the last byte returned by the most recent// read operation.  If write has happened since the last read, UnreadByte// returns an error.func (b *Buffer) UnreadByte() error {	if b.lastRead != opReadRune && b.lastRead != opRead {		return errors.New("bytes.Buffer: UnreadByte: previous operation was not a read")	}	b.lastRead = opInvalid	if b.off > 0 {		b.off--	}	return nil}// ReadBytes reads until the first occurrence of delim in the input,// returning a slice containing the data up to and including the delimiter.// If ReadBytes encounters an error before finding a delimiter,// it returns the data read before the error and the error itself (often io.EOF).// ReadBytes returns err != nil if and only if the returned data does not end in// delim.func (b *Buffer) ReadBytes(delim byte) (line []byte, err error) {	slice, err := b.readSlice(delim)	// return a copy of slice. The buffer's backing array may	// be overwritten by later calls.	line = append(line, slice...)	return}// readSlice is like ReadBytes but returns a reference to internal buffer data.func (b *Buffer) readSlice(delim byte) (line []byte, err error) {	i := bytes.IndexByte(b.buf[b.off:], delim)	end := b.off + i + 1	if i < 0 {		end = len(b.buf)		err = io.EOF	}	line = b.buf[b.off:end]	b.off = end	b.lastRead = opRead	return line, err}// ReadString reads until the first occurrence of delim in the input,// returning a string containing the data up to and including the delimiter.// If ReadString encounters an error before finding a delimiter,// it returns the data read before the error and the error itself (often io.EOF).// ReadString returns err != nil if and only if the returned data does not end// in delim.func (b *Buffer) ReadString(delim byte) (line string, err error) {	slice, err := b.readSlice(delim)	return string(slice), err}// NewBuffer creates and initializes a new Buffer using buf as its initial// contents.  It is intended to prepare a Buffer to read existing data.  It// can also be used to size the internal buffer for writing. To do that,// buf should have the desired capacity but a length of zero.//// In most cases, new(Buffer) (or just declaring a Buffer variable) is// sufficient to initialize a Buffer.func NewBuffer(buf []byte) *Buffer { return &Buffer{buf: buf} }// NewBufferString creates and initializes a new Buffer using string s as its// initial contents. It is intended to prepare a buffer to read an existing// string.//// In most cases, new(Buffer) (or just declaring a Buffer variable) is// sufficient to initialize a Buffer.func NewBufferString(s string) *Buffer {	return &Buffer{buf: []byte(s)}}
 |